Skip to main content

Detection and Quantitation of RecBCD Enzyme (Exonuclease V) Activity

  • Protocol
DNA Repair Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 152))

abstract

The RecBCD enzyme serves two functions in the bacterial cell: it is a nuclease that destroys linear double-stranded DNA (dsDNA), and a DNA helicase that generates single-stranded DNA (ssDNA) used by RecA protein to initiate homologous recombination (13). A specific DNA sequence called Chi (5′-GCTGGTGG) is a signal that regulates these two functions (1,3). An encounter with Chi by RecBCD during its reaction with dsDNA leads to suppression of the nuclease activity and reveals the recombination-initiating function of RecBCD (1,3). The enzyme in Escherichia coli and other bacteria consists of three protein subunits encoded by the recB, recC, and recD genes, whereas some bacteria (e.g., Bacillus subtilis, Lactococcus lactis) produce a two-subunit enzyme [AddAB and RexAB, respectively (4,5)]. The genes encoding these latter enzymes complement an E. coli recBCD deletion mutation in vivo (5,6), and the purified AddAB enzyme has similar catalytic activity to the more extensively studied E. coli enzyme (7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Myers, R. S. and Stahl, F. W. (1994) k and the RecBC D enzyme of Escherichia coli. Annu. Rev. Genet. 28, 49–70.

    Article  PubMed  CAS  Google Scholar 

  2. Smith, G. R., Amundsen, S. K., Dabert, P., and Taylor, A. F. (1995) The initiation and control of homologous recombination in Escherichia coli. Phil. Trans. R. Soc. Lond. B. 347, 13–20.

    Article  CAS  Google Scholar 

  3. Kowalczykowski, S. C., Dixon, D. A., Eggleston, A. K., et al. (1994) Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 58, 401–465.

    PubMed  CAS  Google Scholar 

  4. Kooistra, J. and Venema, G. (1991) Cloning, sequencing, and expression of Bacillus subtilis genes involved in ATP-dependent nuclease synthesis. J. Bacteriol. 173, 3644–3655.

    PubMed  CAS  Google Scholar 

  5. El Karoui, M., Ehrlich, D., and Gruss, A. (1998) Identification of the lactococcal exonuclease/recombinase and its modulation by the putative Chi sequence. Proc. Natl. Acad. Sci. USA 95, 626–631.

    Article  PubMed  Google Scholar 

  6. Kooistra, J., Haijema, B. J., and Venema, G. (1993) The Bacillus subtilis addAB genes are fully functional in Escherichia coli. Mol. Microbiol. 7, 915–923.

    Article  PubMed  CAS  Google Scholar 

  7. Shemyakin, M. F., Grepachevsky, A. A., and Chestukhin, A. V. (1979) Properties of Bacillus subtilis ATP-dependent deoxyribonuclease. Eur. J. Biochem. 98, 417–423.

    Article  PubMed  CAS  Google Scholar 

  8. Smith, G. R. (1990) RecBCD Enzyme, in Nucleic Acids and Molecular Biology, vol. 4 (Eckstein, F. and Lilley, D. M. J., eds.), Springer-Verlag, Berlin, Heidelberg, pp. 78–98.

    Google Scholar 

  9. Muskavitch, K. M. T. and Linn, S. (1981) recBC-like enzymes: Exonuclease V deoxyribonucleases, in The Enzymes, vol. 14 (Boyer, P.D., ed.), Academic Press, New York, pp. 233–250.

    Google Scholar 

  10. Ponticelli, A. S., Schultz, D. W., Taylor, A. F., and Smith, G. R. (1985) Chidependent DNA strand cleavage by RecBC enzyme. Cell 41, 145–151.

    Article  PubMed  CAS  Google Scholar 

  11. Dixon, D. A. and Kowalczykowski, S. C. (1993) The recombination hotspot ÷ is a regulatory sequence that acts by attenuating the nuclease activity of the E. coli RecBCD enzyme. Cell 73, 87–96.

    Article  PubMed  CAS  Google Scholar 

  12. Oishi, M. (1969) An ATP-dependent deoxyribonuclease from Escherichia coli with a possible role in genetic recombination. Proc. Natl. Acad. Sci. USA 64, 1292–1299.

    Article  PubMed  CAS  Google Scholar 

  13. Barbour, S. D. and Clark, A. J. (1970) Biochemical and genetic studies of recombination proficiency in Escherichia coli, I. Enzymatic activity associated with recB+ and recC+ genes. Proc. Natl. Acad. Sci. USA 65, 955–961.

    Article  PubMed  CAS  Google Scholar 

  14. Wright, M., Buttin, G., and Hurwitz, J. (1971) The isolation and characterization from Escherichia coli of an adenosine triphosphate-dependent deoxyribonuclease directed by rec B, C genes. J. Biol. Chem. 246, 6543–6555.

    PubMed  CAS  Google Scholar 

  15. Goldmark, P. J. and Linn, S. (1972) Purification and properties of the recBC DNase of Escherichia coli K-12. J. Biol. Chem. 247, 1849–1860.

    PubMed  CAS  Google Scholar 

  16. Chen, H.-W., Randle, D. E., Gabbidon, M., and Julin, D. A. (1998) Functions of the ATP hydrolysis subunits (RecB and RecD) in the nuclease reactions catalyzed by the RecBCD enzyme from Escherichia coli. J. Mol. Biol. 278, 89–104.

    Article  PubMed  CAS  Google Scholar 

  17. Rosamond, J., Telander, K. M., and Linn, S. (1979) Modulation of the action of the recBC enzyme of Escherichia coli K-12 by Ca2+. J. Biol. Chem. 254, 8646–8652.

    PubMed  CAS  Google Scholar 

  18. MacKay, V. and Linn, S. (1974) The mechanism of degradation of duplex deoxyribonucleic acid by the recBC enzyme of Escherichia coli K-12. J. Biol. Chem. 249, 4286–4294.

    PubMed  CAS  Google Scholar 

  19. Taylor, A. and Smith, G. R. (1980) Unwinding and rewinding of DNA by the RecBC enzyme. Cell 22, 447–457.

    Article  PubMed  CAS  Google Scholar 

  20. Taylor, A. F. and Smith, G. R. (1985) Substrate specificity of the DNA unwinding activity of the RecBC enzyme of Escherichia coli. J. Mol. Biol. 185, 431–443.

    Article  PubMed  CAS  Google Scholar 

  21. Lohman, T. M. and Bjornson, K. P. (1996) Mechanism of helicase-catalyzed DNA unwinding. Annu. Rev. Biochem. 65, 169–214.

    Article  PubMed  CAS  Google Scholar 

  22. Eggleston, A. K. and Kowalczykowski, S. C. (1993) Biochemical characterization of a mutant recBCD enzyme, the recB2109CD enzyme, which lacks k-specific, but not non-specific, nuclease activity. J. Mol. Biol. 231, 605–620.

    Article  PubMed  CAS  Google Scholar 

  23. Muskavitch, K. M. T. and Linn, S. (1982)A unified mechanism for the nuclease and unwinding activities of the recBC enzyme of Escherichia coli. J. Biol. Chem. 257, 2641–2648.

    PubMed  CAS  Google Scholar 

  24. MacKay, V. and Linn, S. (1976) Selective inhibition of the DNase activity of the recBC enzyme by the DNA binding protein from Escherichia coli. J. Biol. Chem. 251, 3716–3719.

    PubMed  CAS  Google Scholar 

  25. Korangy, F. and Julin, D. A. (1994) Efficiency of ATP Hydrolysis and DNA unwinding by the RecBC enzyme from Escherichia coli. Biochemistry 33, 9552–9560.

    Article  PubMed  CAS  Google Scholar 

  26. Roman, L. J. and Kowalczykowski, S. C. (1989) Characterization of the helicase activity of the Escherichia coli RecBCD enzyme using a novel helicase assay. Biochemistry 28, 2863–2873.

    Article  PubMed  CAS  Google Scholar 

  27. Roman, L. J., Eggleston, A. K., and Kowalczykowski, S. C. (1992) Processivity of the DNA helicase activity of Escherichia coli recBCD enzyme. J. Biol. Chem. 267, 4207–4214.

    PubMed  CAS  Google Scholar 

  28. Weiss, B. (1981) Exodeoxyribonucleases of Escherichia coli, in The Enzymes, vol. XIV (Boyer, P. D., ed.), Academic Press, New York, pp. 203–231.

    Google Scholar 

  29. Anderson, D. G. and Kowalczykowski, S. C. (1997) The recombination hot spot κ is a regulatory element that switches the polarity of DNA degradation by the RecBCD enzyme. Genes Dev. 11, 571–581.

    Article  PubMed  CAS  Google Scholar 

  30. McKittrick, N. H. and Smith, G. R. (1989) Activation of Chi recombinational hotspots by RecBCD-like enzymes from enteric bacteria. J. Mol. Biol. 210, 485–495.

    Article  PubMed  CAS  Google Scholar 

  31. Sourice, S., Biaudet, V., El Karoui, M., et al. (1998) Identification of the Chi site of Haemophilus influenzae as several sequences related to the Escherichia coli Chi site. Mol. Microbiol. 27, [pp1021-1029].

    Google Scholar 

  32. Cleaver, J. E. and Boyer, H. W. (1972) Solubility and dialysis limits of DNA oligonucleotides. Biochim. Biophys. Acta 262, 116–124.

    PubMed  CAS  Google Scholar 

  33. Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  34. Sasaki, M., Fujiyoshi, T., Shimada, K., and Takagi, Y. (1982) Fine structure of the recB and recC gene region of Escherichia coli. Biochem. Biophys. Res. Commun. 109, 414–422.

    Article  PubMed  CAS  Google Scholar 

  35. Korangy, F. and Julin, D. A. (1992) Alteration by site-directed mutagenesis of the conserved lysine residue in the ATP-binding consensus sequence of the RecD subunit of the Escherichia coli RecBCD enzyme. J. Biol. Chem. 267, 1727–1732.

    PubMed  CAS  Google Scholar 

  36. Mead, D. A., Szczesna-Skorupa, E., and Kemper, B. (1986) Single-strand DNA “blue” T7 promoter plasmids: a versatile tandem promoter system for cloning and protein engineering. Protein Eng. 1, 67–74.

    Article  PubMed  CAS  Google Scholar 

  37. Amundsen, S. K., Taylor, A. F., Chaudhury, A. M., and Smith, G. R. (1986) recD: the gene for an essential third subunit of exonuclease V. Proc. Natl. Acad. Sci. USA 83, 5558–5562.

    Article  PubMed  CAS  Google Scholar 

  38. Julin, D. A. and Lehman, I. R. (1987) Photoaffinity labelling of the recBCD enzyme of Escherichia coli with 8-azidoadenosine 5′-triphosphate. J. Biol. Chem. 262, 9044–9051.

    PubMed  CAS  Google Scholar 

  39. Finch, P. W., Storey, A., Brown, K., et al. (1986) Complete nucleotide sequence of recD, the structural gene for the α subunit of Exonuclease V of Escherichia coli. Nucleic Acids Res. 14, 8583–8594.

    Article  PubMed  CAS  Google Scholar 

  40. Eichler, D. C. and Lehman, I. R. (1977) On the role of ATP in phosphodiester bond hydrolysis catalyzed by the recBC deoxyribonuclease of Escherichia coli. J. Biol. Chem. 252, 499–503.

    PubMed  CAS  Google Scholar 

  41. Dykstra, C. C., Palas, K. M., and Kushner, S. R. (1984) Purification and characterization of Exonuclease V from Escherichia coli K-12. Cold Spring Harbor Symp. Quant. Biol. XLIX, 463–467.

    Google Scholar 

  42. Masterson, C., Boehmer, P. E., McDonald, F., et al. (1992) Reconstitution of the activities of the RecBCD holoenzyme of Escherichia coli from the purified subunits. J. Biol. Chem. 267, 13,564–13,572.

    PubMed  CAS  Google Scholar 

  43. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  44. O’Sullivan, W. J. and Smithers, G. W. (1979) Stability constants for biologically important metal-ligand complexes. Methods Enzymol. 63, 294–336.

    Article  PubMed  Google Scholar 

  45. Weast, R. C., ed. (1987) CRC Handbook of Chemistry and Physics. CRC, Boca Raton, FL, p. D–162.

    Google Scholar 

  46. Kornberg, A. and Baker, T. A. (1991) DNA Replication, 2nd Ed., W. H. Freeman, New York, p. 89.

    Google Scholar 

  47. Rodriguez, R. L. and Tait, R. C. (1983) Recombinant DNA Techniques: An Introduction, Benjamin/Cummings, Menlo Park, CA, p. 43.

    Google Scholar 

  48. Halford, S. E. and Goodall, A. J. (1988) Modes of DNA cleavage by the EcoRV restriction endonuclease. Biochemistry 27, 1771–1777.

    Article  PubMed  CAS  Google Scholar 

  49. Karu, A. E., MacKay, V., Goldmark, P. J., and Linn, S. (1973) The recBC deoxyribonuclease of Escherichia coli K-12. J. Biol. Chem. 248, 4874–4884.

    PubMed  CAS  Google Scholar 

  50. Hsieh, S. and Julin, D. A. (1992) Alteration by site-directed mutagenesis of the conserved lysine residue in the consensus ATP-binding sequence of the RecB protein of Escherichia coli. Nucleic Acids Res. 20, 5647–5653.

    Article  PubMed  CAS  Google Scholar 

  51. Roman, L. J. and Kowalczykowski, S. C. (1989) Characterization of the adenosinetriphosphatase activity of the Escherichia coli RecBCD enzyme: relationship of ATP hydrolysis to the unwinding of duplex DNA. Biochemistry 28, 2873–2881.

    Article  PubMed  CAS  Google Scholar 

  52. Korangy, F. and Julin, D. A. (1992) Enzymatic effects of a lysine-to-glutamine mutation in the ATP-binding consensus sequence in the RecD subunit of the RecBCD enzyme from Escherichia coli. J. Biol. Chem. 267, 1733–1740.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Julin, D.A. (2000). Detection and Quantitation of RecBCD Enzyme (Exonuclease V) Activity. In: Vaughan, P. (eds) DNA Repair Protocols. Methods in Molecular Biology™, vol 152. Humana Press. https://doi.org/10.1385/1-59259-068-3:91

Download citation

  • DOI: https://doi.org/10.1385/1-59259-068-3:91

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-643-7

  • Online ISBN: 978-1-59259-068-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics