
Simplified Generation of Biomedical 3D Surface Model
Data for Embedding into 3D Portable Document Format
(PDF) Files for Publication and Education
Axel Newe1*, Thomas Ganslandt2

1 Chair of Medical Informatics, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany, 2 Medical Centre for Information and Communication

Technology, University Hospital Erlangen, Erlangen, Germany

Abstract

The usefulness of the 3D Portable Document Format (PDF) for clinical, educational, and research purposes has recently been
shown. However, the lack of a simple tool for converting biomedical data into the model data in the necessary Universal 3D
(U3D) file format is a drawback for the broad acceptance of this new technology. A new module for the image processing
and rapid prototyping framework MeVisLab does not only provide a platform-independent possibility to create surface
meshes out of biomedical/DICOM and other data and to export them into U3D – it also lets the user add meta data to these
meshes to predefine colors and names that can be processed by a PDF authoring software while generating 3D PDF files.
Furthermore, the source code of the respective module is available and well documented so that it can easily be modified
for own purposes.

Citation: Newe A, Ganslandt T (2013) Simplified Generation of Biomedical 3D Surface Model Data for Embedding into 3D Portable Document Format (PDF) Files
for Publication and Education. PLoS ONE 8(11): e79004. doi:10.1371/journal.pone.0079004

Editor: Peter M.A. van Ooijen, University of Groningen, University Medical Center Groningen, Netherlands

Received July 23, 2013; Accepted September 25, 2013; Published November 15, 2013

Copyright: � 2013 Newe, Ganslandt. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors acknowledge support by Deutsche Forschungsgemeinschaft (DFG) and Friedrich-Alexander-University Erlangen-Nuremberg within the
funding programme Open Access Publishing. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: axel.newe@fau.de

Introduction

The Portable Document Format with Embedded 3D
Models

The Portable Document Format (PDF) is a comprehensive

document description language used to define electronic docu-

ments independently of its creating, displaying and printing

software, hardware and operating system. A PDF file encapsulates

all resources to completely describe the content and layout of an

electronic document, including texts, fonts, images and multime-

dia elements without the need of external resources.

Starting with version 1.6 of the PDF Specification [1],

implemented and published first in 2007 with Adobe Acrobat

3D Version 8 and Adobe Reader 8.1, three-dimensional mesh

models can be embedded into this widely known and used file

format (more than 500 million users worldwide, according to

Adobe: http://www.adobe.com/uk/pdf/), which has been the de-

facto standard for the exchange of electronic documents for years

now. An alternative is not in sight.

The Adobe Reader (http://get.adobe.com/reader/

otherversions/) offers many options to display these mesh models

(solid surface, transparent surface, wireframe, point cloud, contour

lines, illumination) and to let the user interact with them (zooming,

panning, rotating, selection of components). Using embedded

scripting, even complex animations and interaction with other

components (e.g. form elements) of the respective PDF document

are possible.

Several authors have proven these 3D models embedded into

PDF documents to be useful for electronic publication in biology

[2,3], (bio-)chemistry [4,5,6,7] and medicine [8,9,10,11,12] and

superior over alternative solutions. Spatial relationships (like the

vessel systems in the liver or neuronal fibers in the central nervous

system) can easily be differentiated and perceived much better

than by textual description [2,13]. The consumer of a document is

not dependent on the one single view the author has selected for a

3D scene, but can freely decide which view(s) shall be used for a

printout, based on his own preferences or interests. Furthermore,

the interaction aspect might be a trigger for a detailed exploration

driven by the reader’s curiosity [2]. Even journals start requesting

their authors to embed multimedia content directly into their

publications [14], because the former concept of supplemental

external resources undermines the concept of a completely self-

contained document with all necessary information [15].

Besides that, it is a simple fact, that much of raw data in science

is 3D by its nature: molecules, microscopic and macroscopic

anatomy, propagation of radiation – traditional ways of presenting

this kind of data in 2D come with an inherent loss of information.

No 2D image, illustration, stereograph or descriptive text will ever

describe 3D data as precisely and in full extent as a 3D

representation can do and therefore should.

Simplifying the Generation of U3D Model Data
The generation of the necessary mesh model data is still

cumbersome. Previous authors needed a tool chain of at least three

[6,8] or even four [11] different software applications and up to 22

PLOS ONE | www.plosone.org 1 November 2013 | Volume 8 | Issue 11 | e79004

single steps until the final PDF was created. Furthermore, some of

these tools are not available for all platforms (OsiriX only for

MacOS, used by [11]), are commercial software with closed source

and license costs (Amira and Adobe 3D Toolkit, used by [2]) or

need intermediate file formats and processing steps (MeshLab,

used by [6] & [8]).

The replacement of the last tool in this chain is not reasonable.

Some kind of PDF authoring tool will always be needed since it

cannot be expected that an application that generates 3D scene

data also provides the ability to set text layout, process screenshots

etc. Therefore a one-click-solution as discussed by [6] is not really

feasible, but the number of tools should be reduced to a maximum

of two applications: one for generating the 3D scene data and one

for generating the final PDF. In this paper, we present a novel way

to create this scene data.

Background and Related Work

PDF Features and Suitability for Biomedical Documents
The PDF specification (latest version 1.7, extension level 5) is

very well documented and available to the full extent from its

developer Adobe (http://www.adobe.com/devnet/pdf/

pdf_reference.edu.html). The usage is free of charge, as well as

the Adobe Reader that is available for all major operating systems

(MS Windows, Mac OS, Linux) and currently the only software

for displaying and printing PDF documents that fully supports all

features of PDF (including multimedia and 3D). Adobe Acrobat is

the Reader’s commercial counterpart for creating and editing PDF

documents. Although there are many commercial and free tools

available for creating PDF files or for converting other documents

into PDF, Adobe Acrobat is the only off-the-shelf software that

fully supports all PDF features (especially regarding 3D models:

http://convert-pdf-software-review.toptenreviews.com/). Besides

that, it is also available for Windows, Mac OS and Linux.

PDF specification 1.7 is also published by the International

Organization for Standardization as ISO 32000–1:2008 [16] and

fulfills all requirements for an interactive publication document as

postulated by Thoma et. al. [15].

A general major issue regarding the exchange of medical data is

privacy and security. PDF provides the possibility to encrypt

documents (with AES or RC4) and to sign them digitally.

Although [17] has proved that PDF security is not waterproof in

all respects, the contents of PDF documents themselves could not

be disclosed. This makes PDF documents suitable for the exchange

of medical data. In 2008, the Association for Information and

Image Management (AIIM) has released a Best Practice Guide for

the implementation of PDF in healthcare (AIIM BP02–2008), also

known as PDF/H (http://www.aiim.org/Research-and-

Publications/Standards/Articles/PDF-Healthcare, [18]), that is

officially accepted by Adobe [19].

In addition to that, DICOM Supplement 104: ‘‘DICOM

Encapsulation of PDF Documents’’ [20] defines a SOP Class to

encapsulate PDF documents into a Composite DICOM SOP

Instance using the Secondary Capture object, so that PDF files can

be exchanged using the appropriate DICOM Service Classes.

Caveats regarding the PDF format with embedded 3D models

discussed by other authors (e.g. [2]) are almost obsolete. Long-time

compatibility and readability should be solved with the transfer of

the PDF specification to ISO 32000. Even simple desktop

hardware is nowadays capable of displaying interactive 3D scenes.

In the case that processing power is not sufficient for a smooth

rendering, Adobe Reader dynamically reduces details during the

interaction and renders again with full details right after the

interactive manipulation of the respective scene has ended. The

only hardware that is currently not capable of rendering 3D scenes

is the growing field of tablet computers.

The Universal 3D (U3D) File Format
PDF allows importing two different 3D model file formats: the

Product Representation Compact (PRC) format and the Universal

3D (U3D) format. Although PRC is the older format (first

appearance around 2002) and published as ISO 14739-1, U3D

seems to have become more accepted and is nowadays available as

export format for many software applications dealing with 3D

models. It was initially defined as an exchange format for 3D

model data in Computer Aided Construction (CAD) by a

consortium of companies related to this industry (including e.g.

Intel, Siemens and Boeing). In December 2004, the Ecma

International (formerly known as European Computer Manufac-

turers Association, ECMA) published the first edition of its

standard ECMA-363 (Universal 3D File Format); the latest version

is the 4th edition from June 2007 [21].

Universal 3D is a binary file format that contains all necessary

information to describe a 3D scene graph. This includes the

geometry data, palette definitions, lighting, cameras (‘‘views’’),

texturing and pre-defined animations (‘‘motions’’).

A U3D scene consists of an arbitrary number of objects that can

be sorted in a monohierarchic object tree. The geometry of each

object can be defined as a triangulated surface mesh, a set of lines

or a set of points (‘‘point cloud’’). For smooth rendering, the level

of detail can be defined depending on the distance to the viewpoint

(CLOD – Continuous Level of Detail). A proprietary bit encoding

algorithm allows for a highly compressed storage of the geometry

data. The possibility to re-use resources once defined (e.g. objects

of the same geometry with different colors) further contributes to

the reduction of the final file size [21].

U3D files are sequences of ‘‘blocks’’, always starting with a ‘‘File

Header Block’’ (block type 0x00443355, which reads as ‘‘U3D’’ in

ASCII). The File Header Block is followed by ‘‘Declaration

Blocks’’ and ‘‘Continuation Blocks’’. Declaration Blocks contain

information about the objects (e.g. mesh definitions or texture

resources) in the file and Continuation Blocks can provide

additional information for objects declared in a Declaration Block

(e.g. the vertex coordinates of a mesh) [21].

Materials and Methods

A New Module for MeVisLab
To achieve the goal of simplifying the creation of U3D files by

reducing the number of necessary tools to only one application in

(but not limited to) the field of biomedical image processing, a new

module for MeVisLab (http://www.mevislab.de/) was created.

MeVisLab is an image processing framework and visual

development environment, developed by MeVis Medical Solutions

AG and Fraunhofer MEVIS (formerly MeVis Research GmbH) in

Bremen, Germany. It is available for all major platforms (MS

Windows, Mac OS and Linux: http://www.mevislab.de/

download/) and offers a variety of licensing options, including a

‘‘MeVisLab SDK Unregistered’’ license which is free for use in

non-commercial organizations and research (http://www.

mevislab.de/mevislab/versions-and-licensing/). MeVisLab can

not only be used as a toolbox for simple image processing, but

also as a framework for creating sophisticated applications with

graphical user interfaces that hide the underlying platform and do

not require substantial programming knowledge [22,23,24]. The

general usage of MeVisLab is explained in its comprehensive and

easy-to-understand documentation (http://www.mevislab.de/

developer/documentation/). Especially the ‘‘Getting Started

Generation of Biomedical 3D Model Data for PDF

PLOS ONE | www.plosone.org 2 November 2013 | Volume 8 | Issue 11 | e79004

Tutorial’’ is recommended to be perused by newcomers. It is

available for direct download (http://www.mevislab.de/

fileadmin/docs/current/MeVisLab/Resources/Documentation/

Publish/SDK/GettingStarted.pdf) as well as with the MeVisLab

installation (Menu ‘‘Help’’ R ‘‘Show Help Overview’’ R ‘‘Getting

Started’’).

The modular design of MeVisLab allows for simple assembling

of image processing ‘‘networks’’ [24] and comes with more than

800 pre-defined standard components (‘‘modules’’). About 1800

additional modules completely wrap ITK and VTK, which makes

the total module base very comprehensive. MeVisLab has been

evaluated as a very good platform for creating application

prototypes using visual data-flow programming [25], is very well

documented and supported by an active online community.

In MeVisLab, surface meshes are internally represented as

Winged Edge Meshes (WEM) as proposed by Baumgart [26,27].

Each WEM in MeVisLab can consist of a number of WEM

‘‘patches’’, whereat each patch represents a closed set of ‘‘faces’’

that in total form the surface of a 3D model. These faces can be

polygonal, but triangles are preferred and recommended. The

standard distribution of MeVisLab contains about 4 dozens of pre-

defined modules for creating, rendering, loading, saving and

manipulating WEMs, including the ‘‘WEMIsoSurface’’ module

that can be directly used to create a surface mesh out of a DICOM

image (e.g. a segmentation mask).

The standard ‘‘WEMSave’’ module of MeVisLab provides the

possibility to store WEM meshes in different formats, i.a. the

popular STL format (STereoLithography format [28], also known

as Standard Tessellation Language) into a file, but meta data

besides the pure surface geometry is exported only for the

proprietary binary Winged Edge Mesh format.

To overcome this lack, a new export module named

‘‘WEMSaveAsU3D’’ was created. Since U3D files can contain

very detailed information about objects and the whole scene, a

functional extension of the existing WEMSave module that

predominantly only stores geometry data was not reasonable. As

all modules for MeVisLab, the WEMSaveAsU3D was written in

C++. Microsoft Visual Studio 2008 was used for editing and

compiling the source code, as well as for debugging. The module

class inherits from the ‘‘WEMInspector’’ base class since it serves

as final module in a WEM processing chain.

To simplify the adding of new features, a set of tool methods was

implemented and the complete set of constant definitions (e.g.

material attributes and block type codes) of the ECMA-363

Standard were made available in a dedicated C++ Header file

(WEMSaveAsU3D_Definitions.h, Figure 1).

The source code was verbosely annotated to facilitate

programmers to understand and expand the implementation.

Almost every line of code that is directly related to the U3D

standard has a comment pointing to the respective chapter of the

ECMA-363 document (Figure 1).

An additional module named ‘‘ComposeWEMDescription-

ForU3D’’ was created to facilitate the user-friendly generation of

meta data necessary for coloring and naming U3D objects. This

module was implemented as a MeVisLab Macro Module using

Python as programming language by reason that it is not a time-

critical module and way easier to modify and extend this way.

Results

The WEMSaveAsU3D module and an auxiliary
ComposeWEMDescriptionForU3D module

The new WEMSaveAsU3D module that has recently been

integrated into the standard distribution of MeVisLab saves

WEMs that consist of triangle faces into U3D files as defined in

Standard ECMA-363. If a WEM contains more than one patch,

each patch is converted to a U3D object. Therefore, each patch

should have a unique name, specified by its ‘‘Label’’ property. If

the names of the patches in a WEM are not unique (or not

specified at all), the module creates new (unique) names for the

U3D file. Within the U3D file, each U3D object carries the name

(label) of the WEM patch it was created from.

More U3D object properties can be specified using the

‘‘Description’’ property of a WEM patch: the color (including

transparency) of a single object and of an object group, the

reflective color of an object, the name of an object group and the

name of the overall model. These additional U3D properties need

to be composed to a single string and thereafter written to the

‘‘Description’’ property of a WEM patch to be parsed by the

module. The helper module ComposeWEMDescriptionForU3D

facilitates the generation of valid string encoded U3D properties.

The current version of the WEMSaveAsU3D module does not

implement all U3D features of the ECMA-363 standard. It is

limited to triangle meshes, coloring, lighting and grouping of

objects into a tree hierarchy. The missing features are discussed

below.

Usage of the Modules
A detailed description of both modules and their usage is

available with the MeVisLab documentation as well as online

(http://www.mevislab.de/docs/current/MeVisLab/Standard/

Documentation/Publish/ModuleReference/WEMSaveAsU3D.

html).

Figure 2 shows the basic usage of the two modules; the

MeVisLab network in the upper part (A) is the standard example

network for the WEMSaveAsU3D module and implements the

simplest processing chain: loading of a mesh, modifying the U3D

properties and saving the U3D file. For MeVisLab novices, we

strongly recommend reading the ‘‘Getting Started’’ tutorial

mentioned above to understand how to create and work with a

MeVisLab network. For a quick assessment of our modules, follow

the instructions in Figure 3 to reproduce and use this example

network.

Figure 1. Code snippet of pre-defined constants. This code snippet from WEMSaveAsU3D_Definitions.h shows comments pointing to the
chapters of the ECMA-363 standard where the respective block type constants are defined.
doi:10.1371/journal.pone.0079004.g001

Generation of Biomedical 3D Model Data for PDF

PLOS ONE | www.plosone.org 3 November 2013 | Volume 8 | Issue 11 | e79004

Figure 2. Example Network for the new MeVisLab modules. (A) This example network illustrates the basic usage of the WEMSaveAsU3D
module and the ComposeWEMDescriptionForU3D module. The network is available with the standard distribution of MeVisLab (right-click on the
instance of a WEMSaveAsU3D module and select ‘‘Show Example Network’’). The LocalWEMLoad module loads a 3D model defined in Object File
Format (‘‘venus. off’’, part of the MeVisLab demo data) and the WEMSaveAsU3D modules writes it into a U3D file. The ComposeWEMDesription-
ForU3D module sets the color of the model as well as object and group names. The result is displayed on the bottom (B).
doi:10.1371/journal.pone.0079004.g002

Generation of Biomedical 3D Model Data for PDF

PLOS ONE | www.plosone.org 4 November 2013 | Volume 8 | Issue 11 | e79004

Figure 4 shows a more complex processing chain. The

corresponding network is provided as File S1. Figure 5 gives an

impression of a human femur, that has been segmented with

MeVisLab and exported to U3D using various names and colors.

Discussion

A Simple and Straight Forward Way to Create 3D Model
Data for Embedding in PDF

The WEMSaveAsU3D module for MeVisLab offers a simple

way to create U3D files from surface meshes of biomedical data. It

works ‘‘out-of-the-box’’ and comes with the standard MeVisLab

distribution. The creation of the surface mesh itself can be

completely handled within MeVisLab; the result can be exported

directly into a U3D file. MeVisLab is available for free and for all

three major platforms (Windows, Mac OS and Linux). By using

MeVisLab for the generation of U3D model data, the direct

export function of 3D content into PDF as demanded by

conclusion #3 in [8] is almost fulfilled. The WEMSaveAsU3D

module does not create a PDF file, but a U3D file with all

necessary meta data for a direct import using PDF authoring

software. The replacement of this authoring step seems not

reasonable since 3D content will probably never be the only

content of a PDF. By combining free PDF authoring tools like

LaTeX (http://www.latex-project.org/) or the iText library

(http://itextpdf.com/) with U3D models coming from MeVisLab,

the complete PDF authoring process can be performed without

any commercial software and on any of the major platforms.

The generation of the model surface still has to be done, but

that is also a step MeVisLab can be used for. More than 2600

image processing modules (including ITK and VTK) provide a

vast potential of finding a solution for many biomedical image

processing and analysis challenges.

To give an example: all four software applications used for

segmentation & surface mesh generation (Mimics by Materialise),

scene assembling (Maya by Alias), object categorization (Deep

Exploration Standard by Right Hemisphere) and coloring (3D

Reviewer by Adobe) for the Visible Korean Project [12] could

probably have been replaced by a single MeVisLab image

processing network, thus avoiding the use of intermediate file

formats (MCS, STL, VRML) and workflow discontinuity (see

Figure 5 for a segmentation result example).

And even if the problem itself has already been solved by

another software, MeVisLab and the WEMSaveAsU3D module

can still be used to convert existing model data into U3D if the

model surface is available in a popular alternative format

(STereoLithography/Standard Tessellation Language, Object File

Format, Wavefront or Polygon File Format). MeVisLab also offers

the possibility to convert Open Inventor Scenes into WEMs which

then can be exported into U3D as shown in Figure 4.

Further Development
There are four U3D features of minor importance for

biomedical imaging still missing as regards WEM export from

MeVisLab: labeling, textures, alternative geometry definition

(point clouds & line set) and pre-defined animations.

The possibility to embed 3D labels (‘‘2D Glyphs’’ in U3D

terminology, demonstrated in fig. 2 and fig. 7 of [29]) makes it easy

to clearly identify objects within the space of an interactive 3D

scene, independently from the view selected by the user. Especially

for PDFs with educational purpose as discussed in [12], e.g. for

teaching anatomy to medical students, an undoubtful labeling of

structures with complex spatial relationships can be very

serviceable.

Application of textures to 3D models (e.g. a human face as

demonstrated in Additional File #1 of [10]), is of limited utility,

except for a simulated volume rendering as shown in fig. 5 of [29].

The main disadvantages of this simulated volume rendering are

fixed windowing and file size. The rendering can be embedded

with only one pre-defined window setting that must match the

preference and intent of the viewer. In Addition to that, a

complete set of textured slices for each of the three Cartesian axes

must be embedded, which inflates the file size. On the other hand,

simulated volume rendering within PDF documents offers a new

way of publishing biomedical 3D images.

U3D models can be defined as point clouds (fig. 1 of [29]) or

line sets. The latter could be used for visualization of vessel

centerlines, nervous fiber tracking or 3D ECG diagrams. Fig. 2(B)

of [30] is a good example of 3D ECG data visualization

Figure 3. Quick reference to creating and using the modules. These screenshots illustrate how to create and use the modules for U3D export.
1. (A) Create a new network (Menu ‘‘File’’ R‘‘New’’). 2. (A) Create an instance of the WemSaveAsU3D module (type the name into the ‘‘Search
Modules’’ field (1) and hit Enter). The module icon (2) should appear in the workspace. 3. (A) Open the example network of the module (right-click the
module icon (2) and select ‘‘Show Example Network’’ (3) from the context menu). 4. (B) A new network tab and two module panels should open
automatically. (If not, open the panels manually by double-clicking the module icons of WemSaveAsU3D and ComposeWEMDescriptionForU3D.) 5.
(B) Modify the U3D model properties using the ComposeWEMDescriptionForU3D panel (4). 6. (B) To save the U3D file, go to the WemSaveAsU3D
panel, specify a file name (5) and click ‘‘Save’’ (6). Other surface models (e.g. in the popular STL format) can be loaded by means of the LocalWEMLoad
module (double-click the respective module icon and select the ‘‘Browse’’ button from the module panel).
doi:10.1371/journal.pone.0079004.g003

Generation of Biomedical 3D Model Data for PDF

PLOS ONE | www.plosone.org 5 November 2013 | Volume 8 | Issue 11 | e79004

constricted by representation in a 2D figure that should ideally be

presented as a 3D model to reveal the full information content.

The last missing feature of U3D is pre-defined animation

(‘‘motion’’ in U3D terms) which is limited to rotation and

translation - a model deformation is not possible. This makes it

impossible to display e.g. the dynamics of a beating heart whereas

the animation of moving joints and their adjacent bones is

conceivable, e.g. for educational purposes.

Although the currently available version of the WEMSaveA-

sU3D module cannot utilize any of the previously discussed U3D

features, their implementation is planned for future releases. Since

the source code of the module is verbosely commented and

available with the MeVisLab distribution since version 2.4, the

implementation can also be done by any user with sufficient C++
programming skills. All necessary tool methods and constants for

writing the respective U3D Modifier Blocks and Resource Blocks

(chapter 9.7 and 9.8 of [21]) are already implemented and used by

the current version of the module. The source code can be found

after the complete installation of MeVisLab in [Install Path]/

Packages/MeVisLab/Standard/Sources/ML/MLWEMModules/

WEMSaveAsU3D.

The DICOM Supplement 132 [31] defines a Surface Segmen-

tation Storage SOP Class based on triangle meshes. Although

MeVisLab currently does not comprise an import module for

DICOM Supplement 132 files, it is desirable to add one as heir to

the ‘‘WEMGenerator’’ base class. Once implemented, such

a module would close the gap between generic DICOM

segmentation results stored as surface meshes and their conversion

into U3D files for embedding into PDF.

File Size Considerations
The last and probably most important issue regarding U3D

data and the respecting PDF files incorporating them is the overall

file size. 3D model data can be very large: one of the results of the

Visible Korean Project [12], a highly detailed 3D PDF of a male

head has a size of almost 100 MiBytes even though the raw data

has been reduced reasonably. To achieve the smallest possible file

size while preserving the most of the comprising information, an

intelligent reduction of the number of surface triangles is

inevitable. The ‘‘WEMReducePolygons’’ module of MeVisLab

allows for reducing the number triangles by collapsing edges using

a Quadric Error Metric [32]. Each of these collapse operations

Figure 4. Example of a more complex application network. (A) This example network simulates a complex image processing chain (read from
bottom to top). The network generates an Open Inventor Scene with a cube and a sphere as ‘‘segmentation results’’ (B). The two objects are then
converted into WEM patches (SoWEMConvertInventor modules) and the properties (names and colors) are set (WEMModify modules). Finally the two
WEM patches are merged into one WEM and afterwards written into a U3D file. The result is displayed on the bottom right (C). A file containing this
network is provided as File S1.
doi:10.1371/journal.pone.0079004.g004

Generation of Biomedical 3D Model Data for PDF

PLOS ONE | www.plosone.org 6 November 2013 | Volume 8 | Issue 11 | e79004

introduces an error in the resulting mesh. Edges that cause as little

error as possible are collapsed first thus preserving as much of the

original shape as possible. Using this method, triangles defining

plane surfaces have highest priority to be replaced by a more

coarse mesh. A good example for a reasonable application of this

triangle reduction strategy is the orthodontic model embedded in

fig. 1 of [8]: the top face of the model is composed of hundreds of

triangles that could be reduced to a number of only 7 without

Figure 5. Model of a segmented femur. Model of a left human femur segmented with MeVisLab. The model shows the outer surface (red), the
surface between compact bone and spongy bone (green) and the surface of the bone marrow (blue).
doi:10.1371/journal.pone.0079004.g005

Generation of Biomedical 3D Model Data for PDF

PLOS ONE | www.plosone.org 7 November 2013 | Volume 8 | Issue 11 | e79004

losing any information. The creator of the final model has to make

a tradeoff between model details and file size, but in most cases the

number of triangles can be reduced by a large percentage without

losing substantial information while greatly reducing file size.

From our experience, a reduction rate of 95% (based on a voxel-

precise mesh) is acceptable for most illustrational purposes and was

applied for Figure 5. Regarding modern broadband internet

connections and network speed, file sizes of around 10 MiBytes

should not be a problem.

Conclusion

Modern science produces data with three-dimensional nature in

many disciplines. PDF technology offers the possibility to publish

this data in all its dimensions and should therefore be used

accordingly. With MeVisLab and only one additional PDF

authoring tool, the complete process of generating 3D PDF

documents for biomedical publications can be handled in a

consolidated working environment, free of license costs and with

all major operating systems. The new WEMSaveAsU3D module

does not feature all capabilities of the U3D standard, but covers

most of the current use cases for 3D visualization in the biomedical

domain. Due to the availability of the well documented source

code, additional features can be added with low effort if needed.

Supporting Information

File S1 MeVisLab network file of the image processing
chain shown in Figure 4 (A).

(MLAB)

File S2 Supplementary version of this article with
embedded 3-d figures.

(PDF)

Author Contributions

Conceived and designed the experiments: AN. Wrote the paper: AN TG.

Implemented the software: AN.

References

1. Adobe Systems Incorporated (1985–2004) PDF Reference, fifth edition, Adobe

Portable Document Format, Version 1.6. Available: http://wwwimages.adobe.

com/www.adobe.com/content/dam/Adobe/en/devnet/pdf/pdfs/pdf_

reference_archives/PDFReference16.pdf. Accessed 10 June 2013.

2. Ruthensteiner B, Heß M (2008) Embedding 3D Models of Biological Specimens

in PDF Publications. Microsc Res Tech 71: 778–786.

3. Iwasa JH (2010) Animating the model figure. Trends Cell Biol 20: 699–704.

4. Kumar P, Ziegler A, Ziegler J, Uchanska-Ziegler B, Ziegler A (2008) Grasping

molecular structures through publication-integrated 3D models. Trends

Biochem Sci 33: 408–412.

5. Selvam L, Vasilyev V, Wang F (2009) Methylation of zebularine a quantum

mechanical study incorporating interactive 3D pdf graphs. J Phys Chem B 113:

11496–11504.

6. Kumar P, Ziegler A, Grahn A, Hee CS, Ziegler A (2010) Leaving the structural

ivory tower, assisted by interactive 3D PDF. Trends Biochem Sci 35: 419–422.

7. Vasilyev V (2010) Towards interactive 3D graphics in chemistry publications.

Theor Chem Acc 125: 173–176.

8. Danz JC, Katsaros C (2011) Three-dimensional portable document format: a

simple way to present 3-dimensional data in an electronic publication.

Am J Orthod Dentofacial Orthop 140: 274–276.

9. de Boer BA, Soufan AT, Hagoort J, Mohun TJ, van den Hoff MJB, et al. (2011)

The interactive presentation of 3D information obtained from reconstructed

datasets and 3D placement of single histological sections with the 3D portable

document format. Development 138: 159–167.

10. Ziegler A, Mietchen D, Faber C, von Hausen W, Schöbel C, et al. (2011)

Effectively incorporating selected multimedia content into medical publications.

BMC Med 9: 17.

11. Phelps A, Naeger DM, Marcovici P (2012) Embedding 3D radiology models in

portable document format. Am J Roentgenol 199: 1342–1344.

12. Shin DS, Chung MS, Park JS, Park HS, Lee S, et al. (2012) Portable document

format file showing the surface models of cadaver whole body. J Korean Med Sci

27: 849–856.

13. Herfarth C, Lamadé W, Fischer L, Chiu P, Cardenas C, et al. (2002) The Effect

of Virtual Reality and Training on Liver Operation Planning. Swiss Surg 8: 67–

73.

14. Maunsell J (2010) Announcement Regarding Supplemental Material. J Neurosci

30: 10599–10600.

15. Thoma GR, Ford G, Antani S, Demner-Fushman D, Chung M, et al. (2010)

Interactive Publication: The document as a research tool. J Web Semant 8: 145–

150.

16. International Organization for Standardization (ISO) (2008) ISO 32000–1: 2008

Document management – Portable document format – Part 1: PDF 1.7.

Available: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_

detail.htm?csnumber = 51502. Accessed 10 June 2013.

17. Castiglione A, De Santis A, Soriente C (2010) Security and privacy issues in the

Portable Document Format. J Syst Software 83: 1813–1822.

18. Association for Information and Image Management (2008) BEST PRACTIC-

ES - IMPLEMENTATION GUIDE FOR THE PORTABLE DOCUMENT
FORMAT HEALTHCARE. Available: http://www.aiim.org/documents/

standards/PDF-h_Implementation_Guide_2008.pdf. Accessed 10 June 2013.
19. Adobe Systems Incorporated (2007) Press release: Adobe to Release PDF for

Industry Standardization. Available: http://www.adobe.com/de/aboutadobe/

pressroom/pr/jan2007/OpenPDF.pdf. Accessed 10 June 2013.
20. DICOM Standards Committee, Working Group 6 (2005) Digital Imaging and

Communications in Medicine (DICOM) Supplement 104: DICOM Encapsu-
lation of PDF Documents. Available: ftp://medical.nema.org/medical/dicom/

final/sup104_ft.pdf. Accessed 10 June 2013.

21. ECMA International (2007) Standard ECMA-363, Universal 3D File Format,
4th edition (June 2007) Available: http://www.ecma-international.org/

publications/files/ECMA-ST/ECMA-363%204th%20Edition.pdf.Accessed 10
June 2013.

22. Koenig M, Spindler W, Rexilius J, Jomier J, Link F, et al. (2006) Embedding

VTK and ITK into a visual programming and rapid prototyping platform. Proc.
Medical Imaging 2006: Visualization, Image-Guided Procedures, and Display

6141.
23. Heckel F, Schwier M, Peitgen HO (2009) Object oriented application

development with MeVisLab and Python. Lecture Notes in Informatics
(Informatik 2009: Im Focus das Leben) 154: 1338–1351.

24. Ritter F, Boskamp T, Homeyer A, Laue H, Schwier M, et al. (2011) Medical

image analysis. IEEE Pulse 2: 60–70.
25. Bitter I, Van Uitert R, Wolf I, Ibanez L, Kuhnigk JM (2007) Comparison of four

freely available frameworks for image processing and visualization that use ITK.
IEEE T Vis Comput Gr 13: 483–493.

26. Baumgart BG (1972) Winged edge polyhedron representation. Available:

http://www.dtic.mil/cgi-bin/GetTRDoc?Location = U2&doc = GetTRDoc.
pdf&AD = AD0755141. Accessed 10 June 2013.

27. Baumgart BG (1975) A polyhedron representation for computer vision. In: Proc.
May 19–22, 1975, national computer conference and exposition, ACM: 589–

596.
28. Burns M (1993) The StL Format. In: Burns M. Automated fabrication:

improving productivity in manufacturing. Prentice-Hall, Inc.

29. Barnes DG, Fluke CJ (2008) Incorporating interactive 3-dimensional graphics in
astronomy research papers. New Astron 13: 599–605.

30. Tereshchenko LG, Han L, Cheng A, Marine JE, Spragg DD, et al. (2010) Beat-
to-beat three-dimensional ECG variability predicts ventricular arrhythmia in

ICD recipients. Heart Rhythm 11: 1606–1613.

31. DICOM Standards Committee, Working Group 6 (2008) Digital Imaging and
Communications in Medicine (DICOM) Supplement 132: Surface Segmenta-

tion Storage SOP Class. Available: ftp://medical.nema.org/medical/dicom/
final/sup132_ft.pdf. Accessed 10 June 2013.

32. Garland M, Heckbert PS (1997) Surface simplification using quadric error
metrics. Proc. 24th Annual Conference on Computer Graphics and Interactive

Techniques: 209–216.

Generation of Biomedical 3D Model Data for PDF

PLOS ONE | www.plosone.org 8 November 2013 | Volume 8 | Issue 11 | e79004

