Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Analysis and verification of fluorescence super-resolution microscopy via polarization modulation in reciprocal space

Not Accessible

Your library or personal account may give you access

Abstract

Based on the polarization property of fluorescent dipoles, fluorescence super-resolution microscopy recently has been proposed by modulating the polarization of the excitation light. In this technique, the super-resolution image is reconstructed by processing the polarization-modulated fluorescence image stack with an iteration algorithm. However, the mechanism of resolution improvement by polarization modulation has been questioned. In this paper, the mechanism of resolution enhancement by polarization modulation is analyzed in reciprocal space. The mathematical model and the reconstruction algorithm of fluorescence super-resolution microscopy via polarization modulation are proposed in reciprocal space. The corresponding simulation results and analysis show that polarization modulation can enlarge the highest detected spatial frequency of fluorescence microscopy to achieve super resolution, which verifies the role of polarization modulation in resolution improvement and provides a useful reference to study fluorescence super-resolution microscopy via polarization modulation in reciprocal space.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Super-resolution algorithm based on Richardson–Lucy deconvolution for three-dimensional structured illumination microscopy

Yanwei Zhang, Song Lang, Hongwei Wang, Jiasheng Liao, and Yan Gong
J. Opt. Soc. Am. A 36(2) 173-178 (2019)

Description of deep saturated excitation multiphoton microscopy for super-resolution imaging

Genevieve Vigil, Yide Zhang, Aamir Khan, and Scott Howard
J. Opt. Soc. Am. A 34(7) 1217-1223 (2017)

Super-resolution fluorescence microscopy by stepwise optical saturation

Yide Zhang, Prakash D. Nallathamby, Genevieve D. Vigil, Aamir A. Khan, Devon E. Mason, Joel D. Boerckel, Ryan K. Roeder, and Scott S. Howard
Biomed. Opt. Express 9(4) 1613-1629 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved