Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Capacity of electromagnetic communication modes in a noise-limited optical system

Not Accessible

Your library or personal account may give you access

Abstract

We present capacity bounds of an optical system that communicates using electromagnetic waves between a transmitter and a receiver. The bounds are investigated in conjunction with a rigorous theory of degrees of freedom (DOF) in the presence of noise. By taking into account the different signal-to-noise ratio (SNR) levels, an optimal number of DOF that provides the maximum capacity is defined. We find that for moderate noise levels, the DOF estimate of the number of active modes is approximately equal to the optimum number of channels obtained by a more rigorous water-filling procedure. On the other hand, for very low- or high-SNR regions, the maximum capacity can be obtained using less or more channels compared to the number of communicating modes given by the DOF theory. In general, the capacity is shown to increase with increasing size of the transmitting and receiving volumes, whereas it decreases with an increase in the separation between volumes. Under the practical channel constraints of noise and finite available power, the capacity upper bound can be estimated by the well-known iterative water-filling solution to determine the optimal power allocation into the subchannels corresponding to the set of singular values when channel state information is known at the transmitter.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Electromagnetic degrees of freedom of an optical system

Rafael Piestun and David A. B. Miller
J. Opt. Soc. Am. A 17(5) 892-902 (2000)

Channel capacity and receiver deployment optimization for multi-input multi-output visible light communications

Jin-Yuan Wang, Jianxin Dai, Rui Guan, Linqiong Jia, Yongjin Wang, and Ming Chen
Opt. Express 24(12) 13060-13074 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (23)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved