Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Nesterov-accelerated adaptive momentum estimation-based wavefront distortion correction algorithm

Not Accessible

Your library or personal account may give you access

Abstract

In order to improve the wavefront distortion correction performance of the classical stochastic parallel gradient descent (SPGD) algorithm, an optimized algorithm based on Nesterov-accelerated adaptive momentum estimation is proposed. It adopts a modified second-order momentum and a linearly varying gain coefficient to improve iterative stability. It integrates the Nesterov momentum term and the modified Adam optimizer to further improve the convergence speed, correct the direction of gradient descent in a timely fashion, and avoid falling into local extremum. Besides, to demonstrate the algorithm’s performance, a wavefront sensorless adaptive optics system model is established using a ${{6}} \times {{6}}$ element deformable mirror as wavefront corrector. Simulation results show that, compared with the SPGD algorithm, the proposed algorithm converges faster, and its Strehl ratio after convergence is nearly 6.25 times that of the SPGD algorithm. Also, the effectiveness and superiority of the proposed algorithm are verified by comparing with two existing optimization algorithms.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Application of AdamSPGD algorithm to sensor-less adaptive optics in coherent free-space optical communication system

Heng Zhang, Li Xu, Yongfei Guo, Jingtai Cao, Wei Liu, and Leqiang Yang
Opt. Express 30(5) 7477-7490 (2022)

Adaptive phase aberration correction based on imperialist competitive algorithm

R. Yazdani, M. Hajimahmoodzadeh, and H. R. Fallah
Appl. Opt. 53(1) 132-140 (2014)

Adaptive stochastic parallel gradient descent approach for efficient fiber coupling

Qintao Hu, Liangli Zhen, Yao Mao, Shiwei Zhu, Xi Zhou, and Guozhong Zhou
Opt. Express 28(9) 13141-13154 (2020)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.