Skip to main content
Log in

Photographing impact of molten molybdenum particles in a plasma spray

  • Reviewed Papers
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Plasma-sprayed molten molybdenum particles (∼40 µm in diameter) were photographed impinging at high velocity (∼140 m/s) on a glass substrate at room temperature. An optical sensor detected thermal radiation emitted by a droplet as it approached the substrate and activated a time delay unit. After a selected time interval, an Nd:YAG laser was triggered, emitting a 5 ns pulse that provided illumination for a charge-coupled device (CCD) camera to photograph the impacting droplet through a long-range microscope. By varying the delay before pulsing the laser, different stages of droplet deformation were recorded. Impacting droplets spread into a thin circular film that ruptured and broke into small fragments. An optical detector recording thermal radiation from the impacting droplet gave a signal that increased as the droplet spread out, reached a maximum when the liquid film began to rupture, and decreased as portions of the droplet recoiled because of surface tension and then flew out of view of the photodetector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Sakakibara, H. Tsukuda, and A. Notomi, The Splat Morphology of Plasma-Sprayed Particle and the Relation to Coating Property, Thermal Spray: Surface Engineering via Applied Research, C.C. Berndt, Ed., May 8–11, 2000 (Montréal, Québec, Canada), ASM International, 2000, p 753–758

    Google Scholar 

  2. V. Pershin, M. Lufitah, S. Chandra, and J. Mostaghimi, Effect of Substrate Temperature on Adhesion Strength of Plasma-Sprayed Nickel Coatings, J. Thermal Spray Technol., Vol 12, 2003, p 370–376

    Article  CAS  Google Scholar 

  3. L. Bianchi, F. Blein, P. Lucchese, M. Vardelle, A. Vardelle, and P. Fuchais, Effect of Particle Velocity and Substrate Temperature on Alumina and Zirconia Splat Formation, Thermal Spray Industrial Applications, C.C. Berndt and S. Sampath, Ed., June 20–24, 1994 (Boston, MA), ASM International, 1994, p 569–574

    Google Scholar 

  4. J. Pech, B. Hannoyer, A. Denoirjean, and P. Fauchais, Influence of Substrate Preheating Monitoring on Alumina Splat Formation in DC Plasma Process, Thermal Spray: Surface Engineering via Applied Research, C.C. Berndt, Ed., May 8–11, 2000 (Montréal, Québec, Canada), ASM International, 2000, p 759–765

    Google Scholar 

  5. C.J. Li, J.L. Li, W.B. Wang, A. Ohmori, and K. Tani, Effect of Particle Substrate Materials Combinations on Morphology of Plasma-Sprayed Splats, Thermal Spray: Meeting the Challenges of the 21st Century, C. Coddet, Ed., May 25–29, 1998 (Nice, France), ASM International, 1998, p 481–487

    Google Scholar 

  6. C.J. Li, J.L. Li, and W.B. Wang, The Effect of Substrate Preheating and Surface Organic Covering on Splat Formation, Thermal Spray: Meeting the Challenges of the 21st Century, C. Coddet, Ed., May 25–29, 1998 (Nice, France), ASM International, 1998, p 473–480

    Google Scholar 

  7. X. Jiang, Y. Wan, H. Hermann, and S. Sampath, Role of Condensates and Adsorbates on Substrate Surface on Fragmentation of Impinging Molten Droplets during Thermal Spray, Thin Solid Films, Vol 385, 2001, p 132–141

    Article  CAS  Google Scholar 

  8. M. Fukumoto, S. Kato, and I. Okane, Splat Behavior of Plasma-Sprayed Particles on Flat Substrate Surface, Thermal Spraying: Current Status and Future Trends, A. Ohmori, Ed., May 22–26, 1995 (Kobe, Japan), High Temperature Society of Japan, 1995, p 353–358

    Google Scholar 

  9. M. Pasandideh-Fard, V. Pershin, S. Chandra, and J. Mostaghimi, Splat Shapes in a Thermal Spray Coating Process: Simulations and Experiments, J. Thermal Spray Technol., Vol 11, 2002, p 206–217

    Article  Google Scholar 

  10. C. Moreau, P. Cielo, M. Lamontagne, S. Dallaire, and M. Vardelle, Impacting Particle Temperature Monitoring during Plasma Spray Deposition, Meas. Sci. Technol., Vol 1, 1990, p 807–814

    Article  CAS  Google Scholar 

  11. M. Vardelle, A. Vardelle, P. Fauchais, and C. Moreau, Pyrometer System for Monitoring the Particle Impact on a Substrate during a Plasma Spray Process, Meas. Sci. Technol., Vol 5, 1994, p 205–212

    Article  CAS  Google Scholar 

  12. P. Gougeon and C. Moreau, Simultaneous Independent Measurement of Splat Diameter and Cooling Time during Impact on a Substrate of Plasma-Sprayed Molybdenum Particles, J. Thermal Spray Technol., Vol 10 (No. 1), 2001, p 76–82

    Article  CAS  Google Scholar 

  13. C. Moreau, J.-F. Bisson, R.S. Lima, and B.R. Marple, Diagnostics for Advanced Materials Processing by Plasma Spraying, Pure and Applied Chem., Vol 77 (No. 2), 2005, p 443–463

    Article  CAS  Google Scholar 

  14. P. Gougeon, C. Moreau, V. Lacasse, M. Lamontagne, I. Powell, and A. Bewsher, Advanced Processing Techniques: Particulate Materials, Vol 6, Metal Powder Industries Federation, Princeton, NJ, 1994, p 199–210

    Google Scholar 

  15. P. Fauchais, Understanding Plasma Spraying, J. Phys. D Appl. Phys., Vol 37, 2004, p R86-R108

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehdizadeh, N.Z., Lamontagne, M., Moreau, C. et al. Photographing impact of molten molybdenum particles in a plasma spray. J Therm Spray Tech 14, 354–361 (2005). https://doi.org/10.1361/105996305X59422

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105996305X59422

Keywords

Navigation