Skip to main content
Log in

Nanostructured component fabrication by electron beam-physical vapor deposition

  • Nanomaterials
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Fabrication of cost-effective, nano-grained net-shaped components has brought considerable interest to Department of Defense, National Aeronautics and Space Administration, and Department of Energy. The objective of this paper is to demonstrate the versatility of electron beam-physical vapor deposition (EB-PVD) technology in engineering new nanostructured materials with controlled microstructure and microchemistry in the form of coatings and net-shaped components for many applications including the space, turbine, optical, biomedical, and auto industries. Coatings are often applied on components to extent their performance and life under severe environmental conditions including thermal, corrosion, wear, and oxidation. Performance and properties of the coatings depend upon their composition, microstructure, and deposition condition. Simultaneous co-evaporation of multiple ingots of different compositions in the high energy EB-PVD chamber has brought considerable interest in the architecture of functional graded coatings, nano-laminated coatings, and design of new structural materials that could not be produced economically by conventional methods. In addition, high evaporation and condensate rates allowed fabricating precision net-shaped components with nanograined microstructure for various applications. Using EB-PVD, nano-grained rhenium (Re) coatings and net-shaped components with tailored microstructure and properties were fabricated in the form of tubes, plates, and Re-coated spherical graphite cores. This paper will also present the results of various metallic and ceramic coatings including chromium, titanium carbide (TiC), titanium diboride (TiB2), hafnium nitride (HfN), titanium-boron-carbonitride (TiBCN), and partially yttria stabilized zirconia (YSZ) TBC coatings deposited by EB-PVD for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Sobota, G. Sorensen, H. Jensen, Z. Bochnicek, and V. Holy, C-N/MeN Nanocomposite Coatings, Deposition and Testing of Performance, Surf. Coat. Technol., Vol 142–144, 2001, p 590–595

    Article  Google Scholar 

  2. K.C. Chin, A. Gohel, H.I. Elim, W. Ji, G.L. Chong, K.Y. Lim, C.H. Sow, and A.T. S. Wee, Optical Limiting Properties of Amorphous SixNy and SiC Coated Carbon Nanotubes, Chem. Phy. Lett., Vol 383 (No. 1–2), 2004, p 72–75

    Article  CAS  Google Scholar 

  3. M. Brogren, G.L. Harding, R. Karmhag, C.G. Ribbing, G.A. Niklasson, and L. Stenmark, Titanium-Aluminum-Nitride Coatings for Satellite Temperature Control, Thin Solid Films, Vol 370 (No. 1–2,) 2000, p 268–277

    Article  CAS  Google Scholar 

  4. Q. Xiang, Y. Zhou, B.S. Ooi, Y.L. Lam, Y.C. Chan, and C.H. Kam, Optical Properties of Er3+-doped SiO2-GeO2-Al2O3 Planar Waveguide Fabricated by Sol-Gel Processes, Thin Solid Films, Vol 370 (No. 1–2), 2000, p 243–247

    Article  CAS  Google Scholar 

  5. H. Holleck, Design of Nanostructured Thin Films for Tribological Applications, TMS Conference Proceedings on Surface Engineering: Science and Technology I, A. Kumar, Y.W. Chung, J.J. Moore, and J.E. Smugeresky, Ed., Minerals, Metals, and Materials Society, Warrendale, PA, 1999, p 207

    Google Scholar 

  6. R.A. Miller, “Thermal Barrier Coatings for Aircraft Engines—History and Directions,” Thermal Barrier Coating Workshop, NASA CP 3312, 1995, p 17

  7. O. Unal, T.E. Mitchell, and A.H. Heuer, Microstructures of Y2O3-Stabilized ZrO2 Electron Beam-Physical Vapor Deposition Coatings on Ni-Base Superalloys, J. Am. Ceram. Soc., Vol 77 (No.4), 1994, p 984–992

    Article  CAS  Google Scholar 

  8. R.A. Miller, Current Status of Thermal Barrier Coatings—An Overview, Surf. Coat. Technol., Vol 30, 1987, p 1

    Article  CAS  Google Scholar 

  9. J. Singh, D.E. Wolfe, and J. Singh, Architecture of Thermal Barrier Coatings Produced by Electron Beam-Physical Vapor Deposition (EB-PVD), J. Mater. Sci., Vol 37, 2002, p 3261–3267

    Article  CAS  Google Scholar 

  10. K.L. Choy, Chemical Vapor Deposition of Coatings, Prog. Mater. Sci., Vol 48 (No. 2), 2003, p 57–170

    Article  CAS  Google Scholar 

  11. D.E. Wolfe, “Growth of Titanium Nitride Coatings by Reactive Ion Beam-Assisted, Electron Beam-Physical Vapor Deposition (RIBA, EB-PVD) and Hard Coatings Evaluation,” Thesis 1996 MSWolfe DE, Penn State University, University Park, PA, 1996

    Google Scholar 

  12. Handbook of Deposition Technologies for Films and Coatings, R. Bunshah, Ed., Noyes Publications, Park Ridge, NJ, 1994

    Google Scholar 

  13. M. Hocking, Metallic and Ceramic Coatings, Longman Scientific and Technical, John Wiley and Sons Inc., 1989

  14. Physical Vapor Deposition, R.J. Hill, Ed., Temescal, a division of the BOC Group, Inc., Berkeley, CA, 1986. p 1–85

    Google Scholar 

  15. R. McIntyre, Mater. Process., Vol 8, 1996, p 455

    Google Scholar 

  16. J. Singh, Laser Beam and Photon-Assisted Processed Materials and Their Microstructure, J. Mater. Sci., Vol 29, 1994, p 5232–5258

    Article  CAS  Google Scholar 

  17. Y-J. Tan and K.Y. Lim, Understanding and Improving the Uniformity of Electrodeposition, Surf. Coat. Technol., Vol 167 (No. 2–3), 2003, p 255–262

    Article  CAS  Google Scholar 

  18. S.S. Eskildsen, C. Mathiasen, and M. Foss, Plasma CVD: Process Capabilities and Economic Aspects, Surf. Coat. Technol., Vol 116–119, 1999, p 18–24

    Article  Google Scholar 

  19. W. Beele, G. Marijnissen, and A. Van Lieshout, The Evolution of Thermal Barrier Coatings—Status and Upcoming Solutions for Today’s Key Issues, Surf. Coat. Technol., Vol 120–121, 1999, p 61–67

    Article  Google Scholar 

  20. P. Fauchais and A. Vardelle, Heat, Mass and Momentum Transfer in Coating Formation by Plasma Spraying, Int. J. Therm. Sci., Vol 39 (No. 9–11), 2000, p 852–870

    Article  CAS  Google Scholar 

  21. D.E. Wolfe and J. Singh, Functionally Gradient Ceramic/Metallic Coatings for Gas Turbine Components by High-Energy Beams for High-Temperature Applications, J. Mater. Sci., Vol 33, 1998, p 3677–3692

    Article  CAS  Google Scholar 

  22. D.E. Wolfe, M. Movchan, and J. Singh, Architecture of Functionally Graded Ceramic Metallic Coatings by Electron Beam-Physical Vapor Deposition, Proceeding of Advances in Coating Technologies, TMS Annual Meeting at Orlando, C.R. Clayton and J.K. Hirvonen, Ed., TMS, Warrendale, PA, 1997, p 93

    Google Scholar 

  23. D.E. Wolfe J. Singh, and K. Narasimhan, Synthesis and Characterization of Multilayered TiC/TiB2 Coatings Deposited by Ion Beam Assisted, Electron Beam-Physical Vapor Deposition (EB-PVD), J. Surf. Coat. Technol., Vol 165, 2003, p 8–25

    Article  CAS  Google Scholar 

  24. D.E. Wolfe, “Synthesis and Characterization of TiC, TiBCN, TiB2/TiC, and TiC/CrC Multilayer Coatings by Reactive and Ion Beam Assisted, Electron Beam-Physical Vapor Deposition (EB-PVD),” Thesis 2001D Wolfe DE, Penn State University, University Park, PA, 2001

    Google Scholar 

  25. J.L. Vossen and J.J. Cuomo, Thin Film Process, Academic Press, Inc., 1978, p 11–73

  26. W. Ensinger, A. Schroer, and G.K. Wolf, A Comparison of IBAD-Films for Wear and Corrosion Protection with Other PVD-Coatings, Nucl. Instrum. Meth. Phys. Res. B, Vol 80/81, 1993, p 445–454

    Article  Google Scholar 

  27. J. Arnalt, J. Delafond, C. Templier, J. Chaumont, and O. Enea, First Stages Study of High Energy Ion Beam Assisted Deposition, Nucl. Instrum. Meth. Phys. Res. B, Vol 80/81, 1993, p 1384–1387

    Article  Google Scholar 

  28. J. Hirvonen, Ion Beam Assisted Thin Film Deposition, Mater. Sci. Rep., Vol 6, 1991, p 215–274

    Article  CAS  Google Scholar 

  29. H. Kaufman, R.S. Robinson, and W.E. Hughes, Characteristics, Capabilities, and Applications of Broad-Beam Sources, Commonwealth Scientific Corporation, Alexandria, VA, 1987, p 1–38

    Google Scholar 

  30. H. Oettel and R. Wiedemann, Residual Stresses in PVD Hard Coatings, Surf. Coat. Technol., Vol 76–77, 1995, p 265–273

    Article  Google Scholar 

  31. I.C. Noyan, T.C. Huang, and B.R. York, Residual Stress/Strain Analysis in Thin Films by X-ray Diffraction, Crit. Rev. Solid State Mater. Sci., Vol 20 (No. 2), 1995, p 125–177

    Article  CAS  Google Scholar 

  32. A. Peiter and H. Wern, Residual Stresses, Strain, August, 1987, p 103–107

  33. R. Hull, J.C. Bean, F. Ross, D. Bahnck, and L.J. Peticolas, The Roles of Stress, Geometry and Orientation on Misfit Dislocation Kinetics and Energetics in Epitaxial Strained Layers, Mater. Res. Soc. Symp. Proc., Vol 239, 1992, p 379–395

    Article  CAS  Google Scholar 

  34. J.H. Je, D.Y. Noh, and K.S. Liang, Preferred Orientation of TiN Films Studied by a Real Time Synchrotron X-Ray Scattering, J. Appl. Phys., Vol 81 (No. 9), 1997, p 6126–6133

    Article  CAS  Google Scholar 

  35. G. Knuyt, C. Quaeyhaegens, J. D’Haen, and L.M. Stals, A. Quantitative Model for the Evolution From Random Orientation to a Unique Texture in PVD Thin Film Growth, Thin Solid Films, Vol 258, 1995, p 159–169

    Article  CAS  Google Scholar 

  36. B. Rauschenbach and K. Helming, Nucl. Instrum. Meth. Phys. Res. B, Vol 42, 1989, p 216–223

    Article  Google Scholar 

  37. T. Roth, K.H. Kloos, and E. Broszeit, Structure, Internal Stresses, Adhesion, and Wear Resistance of Sputtered Alumina Coatings, Thin Solid Films, Vol 153, 1987, p 123–133

    Article  CAS  Google Scholar 

  38. F.A. Quli, “Molybdenum Metallization and Step-Induced Defects in Active Matrix Liquid Crystal Displays,” Thesis 1999d Quli FA, Penn State University, University Park, PA, 1999

    Google Scholar 

  39. D.E. Wolfe and J. Singh, Microstructural Evolution of Titanium Nitride (TiN) Coatings Produced by Reactive Ion Beam-Assisted, Electron Beam Physical Vapor Deposition, J. Mater. Sci., Vol 34, 1999, p 2997–3006

    Article  CAS  Google Scholar 

  40. W. Sproul, PVD Today, Cutting Tool Eng., February 1994, p 52–57

  41. H. Holleck, M. Lahres, and P. Woll, Multilayer Coatings—Influence of Fabrication Parameters on Constitution and Properties, Surf. Coat. Technol., Vol 41, 1990, p 179–190

    Article  CAS  Google Scholar 

  42. D.E. Wolfe and J. Singh, Synthesis and Characterization of TiBCN Coatings Deposited by Ion Beam Assisted, Co-Evaporation Electron Beam-Physical Vapor Deposition (EB-PVD), J. Mater. Sci., Vol 37, 2002, p 3777–3787

    Article  CAS  Google Scholar 

  43. D.E. Wolfe and J. Singh, Titanium Carbide Coatings Deposited by Reactive Ion Beam-Assisted Electron Beam—Physical Vapor Deposition, Surf. Coat. Technol., Vol 124, 2000, p 142–153

    Article  CAS  Google Scholar 

  44. D.E. Wolfe, J. Singh, and K. Narasimhan, Synthesis of Titanium Carbide/Chromium Carbide Multilayers by the Co-Evaporation of Multiple Ingots by Electron Beam Physical Vapor Deposition, Surf. Coat. Technol., Vol 160, 2002, p 206–218

    Article  CAS  Google Scholar 

  45. D.E. Wolfe and J. Singh, Functionally Graded Ceramic Metallic Coatings for Gas Turbine Components by High-Energy Beams for High-Temperature Applications, NATO-Advanced Study Institute Series Proceedings: Protective Coatings and Thin Films, Y. Pauleau and P. Barna, Ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, Vol 21, 1996, p 441–465

    Google Scholar 

  46. D.E. Wolfe and J. Singh, Metallurgical Evaluation and Recommendation of Hard Coatings for Cutting Tool Life Enhancement, Technical Memorandum 97, Applied Research Laboratory, Penn State University, State College, PA, February 1996

    Google Scholar 

  47. J. Singh, Thermal Barrier Coatings (TBC) by Electron Beam-Physical Vapor Deposition (EB-PVD) Process, Surf. Eng. Bull., Vol 7, 1996, p 8

    Google Scholar 

  48. B.C. Oberlander and E. Lugscheider, Mater. Sci. Technol., Vol 9, 1992, p 657

    Article  Google Scholar 

  49. R.A. Miller, Surf. Coat. Technol., Vol 309, 1987, p 1–11

    Article  Google Scholar 

  50. K.S. Ravichanaran, K. An, R.E. Dotton, and S.L. Semiatin, J. Am. Ceram. Soc., Vol 82 (No. 30), 1999, p 673–682

    Google Scholar 

  51. J. Singh, D.E. Wolfe, R. Miller, J. Eldridge, and D-M. Zhu, Thermal Conductivity and Thermal Stability of Zirconia and Hafnia Based Thermal Barrier Coatings by EB-PVD for High Temperature Applications. II International Materials Symposium, Universidade Nova de Lisboa, Campus da Caparica, Portugal, April 14–16, 2003.

    Google Scholar 

  52. D.E. Wolfe, J. Singh, R. Miller, J. Eldridge, and D. Zhu, Tailored Microstructure of EB-PVD 8YSZ Thermal Barrier Coatings With Low Thermal Conductivity and High Thermal Reflectivity for Turbine Applications, Surf. Coat. Technol., Vol 190, 2005, p 132–149

    Article  CAS  Google Scholar 

  53. D.V. Rigney, R. Viguie, D.J. Wartman, and D.W. Skelly, PVD Thermal Barrier Coating Applications and Process Development for Aircraft Engines, J. Therm. Spray Technol., Vol 6, 1997, p 167

    Article  CAS  Google Scholar 

  54. U. Schultz, T. Krell, U. Leushake, and M. Peters, Graded Design of EB-PVD TBC System, Proc. AGARD Workshop on Thermal Barrier Coatings, Aalborg, DK, October 15–16, 1997

  55. Yong-ho Sohn, “Characterization and Life Prediction of Physical Vapor Deposited Partially Stabilized Zirconia Thermal Barrier Coatings,” Ph.D. Thesis, Worcester Polytechnic Institute, MA, 1993

    Google Scholar 

  56. D.E. Glass, R.N. Shenoy, Z. Wang, and M. Halbig, “Effectiveness of Diffusion Barrier Coatings for Mo-Re Embedded in C/SiC and C/C,” NASA/TM, 2001, p 1264

  57. A.J. Sherman, R.H. Tuffias, and R.B. Kaplan, The Properties and Applications of Rhenium Produced by CVD, J. Metals, July 1991, p 20–23

  58. B.D. Reed, J.A. Biaglow, and S. Schneider, “Iridium-coated Rhenium Radiation Cooled Rockets,” NASA Technical Memorandum Number 107453, 1997, p 1–13

  59. T. Leonhardt, M. Hamister, J. Carlen, J. Biaglow, and B. Reed, Near Net Shape Powder Metallurgy Rhenium Thruster, in Conference Proceedings of 36th American Institute of Aeronautics, Reston, VA (17–19 July 2000), p 1–11

  60. J.O. Milewski, D.J. Thoma, J.C. Fonseca, and G.K. Lewis, Directed Light Fabrication of Rhenium Components, Mater. Manuf. Process., Vol 13, 1998, p 719–730

    Article  CAS  Google Scholar 

  61. J. Singh and D.E. Wolfe, Net-Shape Rhenium Fabrication by EB-PVD, J. Adv. Mater. Process., Vol 160, 2002, p 39–42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, J., Wolfe, D.E. Nanostructured component fabrication by electron beam-physical vapor deposition. J. of Materi Eng and Perform 14, 448–459 (2005). https://doi.org/10.1361/105994905X56223

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105994905X56223

Keywords

Navigation