Skip to main content
Log in

Thermodynamic assessment of the Cu−Pt system

  • Basic and Applied Research: Section I
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

A CALPHAD assessment of the Cu−Pt system has been carried out. Two and four sublattice models were applied to describe the Gibbs free energies of ordered phases where the contribution of SRO is taken explicity into account through the reciprocal parameters. The disordered fcc A1 and liquid phases were treated as substitutional solutions. A consistent set of parameters for the phases in the Cu−Pt system as obtained, and those parameters can satisfactorily reproduce the experimental phase equilibria and thermodynamic properties, such as enthalpies, activity of Cu, and long-range order parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.D. Chandler, A.B. Schabel, and L.H. Pignolet, Preparation and Characterization of Supported Bimetallic Pt−Au and Pt−Cu Catalysts from Bimetallic Molecular Precursors, J. Catal., 2000, 193, p 186–198

    Article  Google Scholar 

  2. F. Epron, F. Gauthard, and J. Barbier, Influence of Oxidizing and Reducing Treatments on the Metal-Metal Interactions and on the Activity for Nitrate Reduction of a Pt−Cu Bimetallic Catalyst. Appl. Cata. A 2002, 237, p. 253–261.

    Article  Google Scholar 

  3. T. Maeda, A. Kikitsu, T. Kai, T., Nagase, H. Aikawa, and J. Akiyama. Effect of Added Cu on Disorder-Order Transpormation of Ll0−Fe−Pt, IEEE Trans. Magn., 2002, 38, p 2796–2798.

    Article  ADS  Google Scholar 

  4. Y.K. Takahashi, M. Ohnuma, and K. Hono, Effect of Cu on the Structure and Magnetic Properties of FePt Sputtered Film, J. Magn. Mag. Mater., 2002, 246, 259–265.

    Article  ADS  Google Scholar 

  5. R.P. Subramanian and D.E. Laughlin, Phase Diagrams of Binary Copper Alloys, ASM International, 1993, 326–337.

  6. R. Miida and D. Watanabe, Electron Microscope and Diffraction Study on the Ordered Structures of Platinum-Rich Copper-Platinum Alloys. J. Appl. Crystallogr., 1974, 7, p. 50–59

    Article  Google Scholar 

  7. K. Schubert, B. Kiefer, M. Wilkens, and R. Haufler, On Some Metallic Ordered Phases with Long Periods, Z. Metallkd., 1955, 46, p 692–715

    Google Scholar 

  8. S. Ogawa, H. Iwasaki, and A. Terada, Study of the Long-Period Ordered Alloy Cu3Pt, J. Phys. Soc. Jpn., 1973, 34, p 384–390.

    Article  ADS  Google Scholar 

  9. I.E. Dobrovinskii, V.V. Mechev, S.M. Vinikovskii, and V.A. Linkov, Activity of the Components in the Copper-Platinum System. Izv. VUZ Tsvetn. Metall., 1973, 16, p 25–28, in Russian

    Google Scholar 

  10. V. Gopichand, S.S. Balakrishna, and A.K. Mallik, Systematics of Copper Base Binary Phase Diagrams, CALPHAD, 1980, 4, p 109–122

    Article  Google Scholar 

  11. J.R. Taylor, Thermodynamic Assessment of Platinum Group Metal Systems-The Optimization of Binary Phase Diagrams, Platinum Met. Rev., 1985, 29, p 74–80

    Google Scholar 

  12. F. Doerinckel, On Some Platinum Alloys, Z. Anorg. Chem., 1907, 54, p 333–356, in German

    Article  Google Scholar 

  13. Y.G. Park and D.R. Gaskell, The Thermodynamic Activities of Copper and Iron in the System Copper-Iron-Platinum at 1300°C, Metall. Trans. B, 1989, 20B, p. 127–135

    ADS  Google Scholar 

  14. F. Weibke and H. Matthes, Electromotive Force in the System Platinum-Copper and Their Thermodynamic Evaluation, Z. Electrochem., 1941, 47, p 421–432

    Google Scholar 

  15. A. Schneidner and U. Esch, The System Copper-Platinum., Z. Electrochem., 1944, 50, p. 290–301

    Google Scholar 

  16. A.A. Rudnitskii, Thermoelectric Method of Studying Transformations in Metals and Alloys, Zh. Neorg. Khim., 1956., 6, p 1305–1321, in Russian

    Google Scholar 

  17. L.R. Bidwell, W.J. Schulz, and R.K. Saxer, The Activity of Solid Copper-Platinum Alloys and Some Observations on the Ordering of Cu3Pt, Acta Metall., 1967, 15, p 1143–151

    Article  Google Scholar 

  18. E.W. Collings, R.D. Smith, and J.C. Ho, Magnetic Investigations of Order-Disorder Transformations in Copper-Platinum (12.5–27.5 at.%) Alloys, J. Less-Common Met., 1976, 46 p 189–195

    Article  Google Scholar 

  19. E.V. Kozlov, A.S. Tailashev, Y.A. Savanov, and A.A. Klopotov, Study of the Ordered State of a Copper-Platinum (Cu3Pt) Alloy with Periodic Antiphase Boundaries, Strukt. Mekh. Faz. Prev. Met. Splavov, 1976, p 146–149, in Russian

  20. K. Mitsui, Y. Mishima, and T. Suzuki, Heterogeneous Ordering and Antiphase Domain Morphology in Cu3Pt (19 at.%Pt). Phil. Mag. A, 1986, 53, p 357–376

    Article  ADS  Google Scholar 

  21. K. Mitsui and M. Takahashi, Effect of Ternary Addition on the Formation of Cu3Pt and CuPt Order Phases in the Cu−Pt System, Phil. Mag. Lett., 1998, 77, p 49–57

    Article  ADS  Google Scholar 

  22. M. Yodogawa, D.-M. Wee, Y. Oya, and T. Suzuki, The Morphology of Antiphase Domains of Cu3Pt and Cu3Au−Ni Alloys, Ser. Metall., 1980, 14, p 849–854

    Article  Google Scholar 

  23. N. Kuwano, T. Urazono, and K. Oki. Decomposition Process from Ll1 to (Al+Ll1) Involving First-Order Transformation in a Cu−Pt Alloy, Mater. Trans. JIM, 1991, 32, p 438–444

    Google Scholar 

  24. N.S. Kurnakov and V. A. Nemilow, On the Alloys of Platinum with Copper, Z. Anorg. Chem., 1933, 210, p 1–12, in German

    Article  Google Scholar 

  25. P. Assaya and M. Dode, Experimental Thermodynamic Study of the Superlattice of CuPt, Compt. Rend. Acad. Sci., 1954, 239, p 762–764, in French

    Google Scholar 

  26. P. Assayag, Contribution to the Study of the Thermodynamic Properties of Copper-Platinum Alloys, Ann. Chem., 1955, 10, p 637–665, in French

    Google Scholar 

  27. R.S. Irani and R.W. Cahn, A Classical Phase Transformation: Order-Disorder in CuPt, Nature, 1970, 226, p 1045–1046

    Article  ADS  Google Scholar 

  28. K. Hisatsune, M. Ohta, and M. Yamane, Coexistent Region of Ordered and Disordered Phases in CuPt, Scr. Metall., 1977, 11, p 563–564

    Article  Google Scholar 

  29. G.W. Geiken, “A Thermodynamic Study of the Heat of Ordering in CuPt,” USAEC Report UCRL-17615, University of California, Berkeley, 1967

    Google Scholar 

  30. R. Oriani and W.K. Murphy, Thermodynamics of Ordering Alloys-IV. Heats of Formation of Some Alloys of Transition Metals, Acta Metall., 1962, 10, p 879–885

    Article  Google Scholar 

  31. K.L. Myles and J.B. Darby, Jr., Thermodynamic Properties of Solid Palladium-Copper and Platinum-Copper Alloys, Acta Metall., 1968, 16, p 485–492

    Article  Google Scholar 

  32. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelly, and D. Wagman, Selected Values of the Thermodynamic Properties of the Elements, Materials Park, Ohio, 1973, p 782–786

  33. S.V. Meschel and O.J. Kleppa, Thermochemistry of Some Binary Alloys of Noble Metals (Cu, Ag, Au) and Transition Metals by High Temperature Direct Symthesis Calorimetry, J. Alloys Compd., 2003, 350, p 205–212

    Article  Google Scholar 

  34. S. Takizawa, K. Terakura, and T. Mohri, Electronic Theory for Phase Stability of Nine AB Binary Alloys, with A=Ni, Pd, ro Pt and B=Cu, Ag, or Au., Phys. Rev. B 1989, 39, p 5792–5797

    Article  ADS  Google Scholar 

  35. Z.W. Lu, S.H. Wei, A. Zunger, S. Froto-Pessoa, and L.G. Ferriera, First-Principles Statistical Mechanics of Structural Stability of Intermetallic Compounds, Phys. Rev. B, 1991, 44, p 512–544

    Article  ADS  Google Scholar 

  36. S. Takizawa, A New Phase of Cu−Pt Alloy-Theoretical Prediction and Experimental Support, J. Phys. Soc. Jpn., 1996, 65, p 2178–2181

    Article  ADS  Google Scholar 

  37. G.H. Johannesson, T. Bligaard, A.V. Ruban, H.L. Skriver, K.W. Jacobsen, and J.K. Nørskov, Combined Electronic Structure and Evolutionary Search Approach to Materials Design, Phys. Rev. Lett., 2002, 88, p 255506-1–255506-5

    Article  ADS  Google Scholar 

  38. FR. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, and A.K. Niessen, Cohesion in Metals, Transition Metal Alloys, Elsevier Science, Amsterdam, The Netherlands, 1988, p 619–637

    Google Scholar 

  39. J.M. McCormack, J.R. Myers, and R.K. Saxer, Thermodynamic Properties of Copper-Platinum Alloys, Trans. Metall. Soc. AIME, 1966, 236, p 1635–1637

    Google Scholar 

  40. N.G. Schmahl and E. Minzl, Determination of Copper Activities in Cu−Pt and Cu−Au Alloys with the Aid of Oxygen Decomposition Pressures, Z. Phys. Chem., 1965, 47, p 164–182

    Google Scholar 

  41. C. Landolt and A. Muan, Activity-Composition Relations in Solid Cu−Pt Alloys as Derived from Equilibrium Measurements in the System Cu−Pt−O at 1000°C and 1200°C, Trans. Metall. Soc. AIME, 1969, 245, p 791–796

    Google Scholar 

  42. C.B. Walker, X-Ray Measurement of Order in CuPt, J. Appl. Phys., 1952, 23, p 118–123

    Article  ADS  Google Scholar 

  43. H. Lang, T. Mohri, and W. Pfeiler, Ll1 Long-Range Order in CuPt: A Comparison Between X-Ray and Residual Resistivity Measurements, Intermetallics, 1999, 7, p 1373–1381

    Article  Google Scholar 

  44. D.K. Saha and K. Ohshima, Short-Range Order in Cu−Pt Alloys, J. Phys. Condens. Matter., 1993, 5, p 4099–4110

    Article  ADS  Google Scholar 

  45. I.G. Batirev, A.A. Katsnelson, L. Kertész, and A. Szász, Conherent Potential Approximation of Short-Range Order in Cluster Model of Alloys, Phys. Stat. Sol., 1980, 101, p 163–168

    Article  ADS  Google Scholar 

  46. A.T. Dinsdale, SGTE Data for Pure Elements, CALPHAD, 1991, 15, p 317–425

    Article  Google Scholar 

  47. B. Sundman, S.G. Fries, and W.A. Oates, Incorporation of Cluster Expansion Theory into the Compound Engergy Formalism, CALPHAD, 1998, 22, p 335–357

    Article  Google Scholar 

  48. T. Abe and B. Sundman, A Description of the Effects of Short Range Ordering in the Compound Energy Formalism, CALPHAD, 2003, 27, p 403–408

    Article  Google Scholar 

  49. B. Janson, “Evaluation of Parameters in Thermochemical models using Different Types of Experimental Data Simultaneously,” Ph.D. dissertation, Royal Institute of Technology, Stockholm, Sweden, 1984

    Google Scholar 

  50. B. Jansson, M. Schalin, M. Selleby, and B. Sundman, The Thermo-Calc Database System, Computer Software in Chemical and Extractive Metallurgy, C.W. Bale and G.A. Irons, Eds., The Metals Society of CIM, Quebec, 1993, p 57–71

    Google Scholar 

  51. M.J. Richard and J.W. Cahn, Pairwise Interactions and the Ground State of Ordered Binary Alloys, Acta Metall., 1971, 19, p 1263–1277

    Article  Google Scholar 

  52. J. Büth and G. Inden, Ordering and Segregation Reactions in fcc Binary Alloys, Acta Metall, 1982, 30, p 213–224

    Article  Google Scholar 

  53. J. Kanamori and Y. Kakehashi, Conditions for the Existence of Ordered Structure in Binary Alloy Systems, J. Phys., Paris, 1977, 38, p C7-274–C7-279

    Article  Google Scholar 

  54. S.C. Moss and P.C. Clapp, Correlation Functions of Disordered Binary Alloys III, Phys. Rev., 1968, 171, p 764–777

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abe, T., Sundman, B. & Onodera, H. Thermodynamic assessment of the Cu−Pt system. JPED 27, 5–13 (2006). https://doi.org/10.1361/105497196X92736

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105497196X92736

Keywords

Navigation