Skip to main content
Log in

A thermodynamic assessment of the Co-V system

  • Basic And Applied Research
  • Published:
Journal of Phase Equilibria

Abstract

A thermodynamic evaluation of the binary Co-V system has been done using experimental thermochemical and phase diagram data. A consistent thermodynamic description, using a Redlich-Kister model for solution phases and sublattice models for the intermetallics, was obtained, and it agreed well with the critically evaluated experimental data. The model for the solid phases accounts for the magnetic contribution to the Gibbs energy. The addition of a composition dependent magnetic term also led to the prediction of an fcc-Co miscibility gap. The model parameters have been determined using a computerized optimization technique. Several diagrams and tables concerning phase equilibria are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Köster and E. Wagner: “Der Einfluss der Elemente Aluminium, Titan, Vanadium, Kupfer, Zink, Zinn und Antimon auf die Polymorphe Umwandlung des Kobalts,” Z. Metallkd., 1937, 29, pp. 230 (in German).

    Google Scholar 

  2. P. Pietrokowsky and P. Duwez: “Crystallography of the Sigma Phase,” Trans. AIME, 1950, 188, pp. 1283.

    Google Scholar 

  3. W.B. Pearson, J.W. Christian, and W. Hume-Rothery: Nature, 1951, 168, pp. 110.

    Article  ADS  Google Scholar 

  4. A.H. Sully: “The Sigma Phase in Binary Alloys of the Transition Elements,” J. Inst. Met., 1951, 80, pp. 173.

    Google Scholar 

  5. W.B. Pearson and J.W. Christian: “The Structure of the σ phase in Vanadium-Nickle Alloys,” Acta Crystallogr., 1952, 5, pp. 157.

    Article  Google Scholar 

  6. P. Greenfield and P.A. Beck: “The Sigma Phase in Binary Alloys,” Trans. AIME, 1954, 200, pp. 253.

    Google Scholar 

  7. P. Greenfield and P.A. Beck: “A Correction to ‘The Sigma Phase in Binary Alloys’,” Trans. AIME, 1954, 200, pp. 758.

    Google Scholar 

  8. P. Duwez: “The Crystal Structure of V3Co,” Trans. AIME, 1951, 191, pp. 791.

    Google Scholar 

  9. W. Köster and H. Schmid: “Das Zweistoffsystem Kobalt-Vanadin,” Z. Metallkd., 1955, 46, pp. 195.

    Google Scholar 

  10. A. Davydov and U.R. Kattner: “Thermodynamic Assessment of the Co-Mo System,” J. Phase Equilib., 1999, 20(1), pp. 5.

    Article  Google Scholar 

  11. T. Nishizawa, M. Ko, and M. Hasebe: “Thermodynamic Analysis of Solubility and Miscibility Gap in Ferromagnetic Alpha Iron Alloys,” Acta Metall, 1979, 27, pp. 817.

    Article  Google Scholar 

  12. K. Oikawa, G.-W. Qin, T. Ikeshoji, R. Kainuma, and K. Ishida: “Direct Evidence of Magnetically Induced Phase Separation in the fcc Phase and Thermodynamic Calculations of Phase Equilibria of the Co-Cr System,” Act Mater., 2002, 50, pp. 2223.

    Article  Google Scholar 

  13. G. Inden: “Magnetically Induced Heterogeneities With Tricritical Point in FCC Co-V Alloys,” Scr. Metall., 1981, 15, pp. 669.

    Article  Google Scholar 

  14. L. Kaufman and H. Bernstein: Computer Calculations of Phase Diagrams, Academic Press, New York, 1970.

    Google Scholar 

  15. N. Saunders and A.P. Miodownik: Calphad Calculations of Phase Diagrams, A Comprehensive Guide, Pergamon Materials Series, Vol. 1, R.W. Cahn, ed., 1998.

  16. M. Hillert and L.-I. Staffansson: “The Regular Solution Model for Stoichiometric Phases and Ionic Melts,” Acta Chem. Scand., 1970, 24, pp. 3618.

    Article  Google Scholar 

  17. B. Sundman, B. Jansson, and J.-O. Andersson: “The Thermo-Calc Databank System,” Calphad, 1985, 9(2), pp. 153.

    Article  Google Scholar 

  18. Scientific Group Thermodata Europé (SGTE) Data for Pure Elements, A.T. Dinsdale, compiler, NPL Report DMA(A), 195, National Physics Laboratory, Teddington, UK, 1989.

  19. O. Redlich and A.T. Kister: “Algebraic Representation of Thermodynamic Properties and the Classification of Solutions,” Ind. Eng. Chem., 1948, 40, pp. 478.

    Article  Google Scholar 

  20. G. Inden: “The Role of Magnetism in the Calculation of Phase Diagrams,” Physica, 1981, 103(B), pp. 82.

    Google Scholar 

  21. M. Hillert and M. Jarl: “A Model for Alloying Effects in Ferromagnetic Metals,” Calphad, 1978, 2, pp. 227.

    Article  Google Scholar 

  22. B. Sundman, S.G. Fries, and W.A. Oates: “A Thermodynamic Assessment of the Au-Cu System,” Calphad, 1998, 22(3), pp. 335.

    Article  Google Scholar 

  23. A. Kusoffsky, N. Dupin, and B. Sundman: “On the Compound Energy Formalism Applied to Fcc Ordering,” Calphad, 2001, 25(4), pp. 549.

    Article  Google Scholar 

  24. J.O. Andersson and B. Sundman: “Thermodynamic Properties of the Cr-Fe System,” Calphad, 1987, 11, pp. 83.

    Article  Google Scholar 

  25. I. Ansara, T.G. Chart, A. Fernández Guillermet, F.H. Hayes, U.R. Kattner, D.G. Pettifor, N. Saunders and K. Zeng: “Thermodynamic Modelling of Solutions and Alloys,” Calphad, 1997, 21(2), pp. 171.

    Article  Google Scholar 

  26. T. Nishizawa and K. Ishida: “The Cobalt System,” Bull. Alloy Phase Diagrams, 1983, 4(4), pp. 420.

    Google Scholar 

  27. W. Hume-Rothery: “The Face-Centered Cubic Solid Solutions in Transition Metal Alloys of the First Long Period,” Philos. Mag., 1961, 6, pp. 769.

    Article  ADS  Google Scholar 

  28. J.F. Smith: “The Co-V System,” J. Phase Equilib., 1993, 12(3), pp. 324.

    Article  MathSciNet  Google Scholar 

  29. S.T. Zegler and J.W. Downey: “Ternary Cr3O-Type Phases With Vanadium,” Trans. Metall. Soc. AIME, 1963, 227, pp. 1407.

    Google Scholar 

  30. S.M. Allen and J.W. Cahn: “Coherent and Incoherent Equilibria in Fe-Rich Fe-Al Alloys,” Acta Met., 1975, 23(9), pp. 1017.

    Article  Google Scholar 

  31. M.W. Chase: “Heats of Transition of the Elements,” Bull. Alloy Phase Diagrams, 1983, 4(1), pp. 124.

    Google Scholar 

  32. L.J. Nagel, B. Fultz, and J.L. Robertson: “Phase Equilibria of Co sub 3 V,” J. Phase Equilib., 1997, 18(1), pp. 21.

    Article  Google Scholar 

  33. S. Saito: “The Crystal Structure of VCo3,” Acta Crystallogr., 1959, 12, pp. 500.

    Article  Google Scholar 

  34. E.T. Peters and L.E. Tanner: “A New High Temperature Form of the Intermetallic Compound Co3V,” Trans. Metall. Soc. AIME, 1965, 233, pp. 2126.

    Google Scholar 

  35. Y. Aoki, K. Asami, and M. Yamamoto: “Transformation Temperatures and Magnetic Properties of the Ordered Hexagonal VCo3 Compound,” Phys. Status Solidi A, 1974, 23(2), pp. 167.

    Article  ADS  Google Scholar 

  36. M.V. Nevitt and P.A. Beck: “Curie Temperatures of Binary and Ternary Sigma Phases,” Trans. AIME, 1955, 203, pp. 669.

    Google Scholar 

  37. H.P. Stüwe: “Description of the Sigma Phase as a Structure With Sphere Packing,” Trans. Metall. Soc. AIME, 1959, 215, pp. 408.

    Google Scholar 

  38. N.J. Marcone and J.A. Coll: “Order-Disorder in Co-V Sigma Phase,” Acta Metall., 1964, 12, pp. 742.

    Article  Google Scholar 

  39. E.A. Statnova, V.V. Kuprina, and E.M. Sokolovskaya: “Physicochemical Study of the Interaction of Vanadium, Niobium, and Tantalum With Cobalt and Platinum,” Splavy Blagorod. Met., 1977, pp. 98 (in Russian).

  40. P.J. Spencer and F.H. Putland: “Calorimetric Study of the Co-V System,” J. Chem. Thermodyn., 1976, 8(6), pp. 551.

    Article  Google Scholar 

  41. B. Jansson: PhD Thesis, Royal Institute of Technology, Stockholm, Sweden, 1984.

    Google Scholar 

  42. A. Fernández Guillermet: “Critical Evaluation of the Thermodynamic Properties of Cobalt,” Int. J. Thermodyn., 1987, 8(4), pp. 481.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bratberg, J., Sundman, B. A thermodynamic assessment of the Co-V system. JPE 24, 495–503 (2003). https://doi.org/10.1361/105497103772084534

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105497103772084534

Keywords

Navigation