Skip to content
Publicly Available Published by De Gruyter January 1, 2009

Photocatalysis and solar hydrogen production

  • Akihiko Kudo

Abstract

Photocatalytic water splitting is a challenging reaction because it is an ultimate solution to energy and environmental issues. Recently, many new powdered photocatalysts for water splitting have been developed. For example, a NiO (0.2 wt %)/NaTaO3:La (2 %) photocatalyst with a 4.1-eV band gap showed high activity for water splitting into H2 and O2 with an apparent quantum yield of 56 % at 270 nm. Overall water splitting under visible light irradiation has been achieved by construction of a Z-scheme photocatalysis system employing visible-light-driven photocatalysts, Ru/SrTiO3:Rh and BiVO4 for H2 and O2 evolution, and an Fe3+/Fe2+ redox couple as an electron relay. Moreover, highly efficient sulfide photocatalysts for solar hydrogen production in the presence of electron donors were developed by making solid solutions of ZnS with AgInS2 and CuInS2 of narrow band gap semiconductors. Thus, the database of powdered photocatalysts for water splitting has become plentiful.


Conference

International IUPAC Conference on Green-Sustainable Chemistry, IUPAC International Conference on Green Chemistry, ICGC, Green Chemistry , 1st, Dresden, Germany, 2006-09-10–2006-09-15


References

1. A. Fujishima, T. N. Rao, D. A. Tryk. J. Photochem. Photobiol., C 1, 1 (2000).10.1016/S1389-5567(00)00002-2Search in Google Scholar

2. doi:10.1246/bcsj.44.1148, A. Fujishima, K. Honda. Bull. Chem. Soc. Jpn. 44, 1148 (1971).Search in Google Scholar

3. doi:10.1038/238037a0, A. Fujishima, K. Honda. Nature 238, 37 (1972).Search in Google Scholar

4. doi:10.1039/c39860001706, K. Domen, A. Kudo, M. Shibata, A. Tanaka, K. Maruya, T. Onishi. J. Chem. Soc., Chem. Commun. 1706 (1986).Search in Google Scholar

5. doi:10.1016/0021-9517(88)90066-8, A. Kudo, A. Tanaka, K. Domen, K. Maruya, K. Aika, T. Onishi. J. Catal. 111, 67 (1988).Search in Google Scholar

6. doi:10.1016/0021-9517(89)90274-1, A. Kudo, K. Sayama, A. Tanaka, K. Asakura, K. Domen, K. Maruya, T. Onishi. J. Catal. 120, 337 (1989).Search in Google Scholar

7. S. Ikeda, A. Tanaka, K. Shinohara, M. Hara, J. N. Kondo, K. Maruya, K. Domen. Microporous Mesoporous Mater. 9, 253 (1997).10.1016/S0927-6513(96)00112-5Search in Google Scholar

8. doi:10.1039/a704947a, Y. Inoue, M. Kohno, T. Kaneko, S. Ogura, K. Sato. J. Chem. Soc., Faraday Trans. 94, 89 (1998).Search in Google Scholar

9. doi:10.1021/j100105a001, K. Sayama, H. Arakawa. J. Phys. Chem. 97, 531 (1993).Search in Google Scholar

10. K. Sayama, H. Arakawa. J. Photochem. Photobiol., A 77, 243 (1994).10.1016/1010-6030(94)80049-9Search in Google Scholar

11. doi:10.1016/S0920-5861(02)00355-3, H. Kato, A. Kudo. Catal. Today 78, 561 (2003).Search in Google Scholar

12. doi:10.1021/jp010794j, J. Sato, S. Saito, H. Nishiyama, Y. Inoue. J. Phys. Chem. B 105, 6061 (2001).Search in Google Scholar

13. doi:10.1021/jp020539e, K. Ikarashi, J. Sato, H. Kobayashi, S. Saito, H. Nishiyama, Y. Inoue. J. Phys. Chem. B 106, 9048 (2002).Search in Google Scholar

14. doi:10.1021/jp030020y, J. Sato, S. Saito, H. Nishiyama, Y. Inoue. J. Phys. Chem. B 107, 7965 (2003).Search in Google Scholar

15. doi:10.1021/jp030021q, J. Sato, H. Kobayashi, Y. Inoue. J. Phys. Chem. B 107, 7970 (2003).Search in Google Scholar

16. doi:10.1021/jp0373189, J. Sato, H. Kobayashi, K. Ikarashi, S. Saito, H. Nishiyama, Y. Inoue. J. Phys. Chem. B 108, 4369 (2004).Search in Google Scholar

17. doi:10.1021/ja042973v, J. Sato, N. Saito, Y. Yamada, K. Maeda, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, K.Domen, Y. Inoue. J. Am. Chem. Soc. 127, 4150 (2005).Search in Google Scholar

18. doi:10.1021/ja00334a014, A. W.-H. Mau, C. B. Huang, N. Kakuta, A. J. Bard. J. Am. Chem. Soc. 106, 6537 (1984).Search in Google Scholar

19. doi:10.1021/j100254a001, M. Matsumura, S. Furukawa, Y. Saho, H. Tsubomura. J. Phys. Chem. 89, 1327 (1985).Search in Google Scholar

20. doi:10.1021/j100277a024, J. F. Reber, M. Rusek. J. Phys. Chem. 90, 824 (1986).Search in Google Scholar

21. doi:10.1039/f29827800359, J. R. Darwent, A. Mills. J. Chem. Soc., Faraday Trans. 2 78, 359 (1982).Search in Google Scholar

22. doi:10.1246/bcsj.73.1307, K. Domen, J. N. Kondo, M. Hara, T. Takata. Bull. Chem. Soc. Jpn. 73, 1307 (2000).Search in Google Scholar

23. doi:10.1023/A:1023480507710, A. Kudo. Catal. Survey Asia 7, 31 (2003).Search in Google Scholar

24. doi:10.1246/cl.2002.736, G. Hitoki, A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, K. Domen. Chem. Lett. 7, 736 (2002).Search in Google Scholar

25. doi:10.1021/jp025961+, A. Kasahara, K. Nukumizu, G. Hitoki, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen. J. Phys. Chem. A 106, 6750 (2002).Search in Google Scholar

26. doi:10.1039/b202393h, G. Hitoki, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen. Chem. Commun. 16, 1698 (2002).Search in Google Scholar

27. W. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. N. Kondo, M. Hara, M. Kawai, Y. Matsumoto, K. Domen. J. Phys. Chem. B 107, 1098 (2003).Search in Google Scholar

28. doi:10.1021/jp036189t, M. Hara, Y. Chiba, A. Ishikawa, T. Takata, J. N. Kondo, K. Domen. J. Phys. Chem. B 107, 13441 (2003).Search in Google Scholar

29. doi:10.1039/b309935k, M. Hara, J. Nunoshige, T. Takata, J. N. Kondo, K. Domen. Chem. Commun. 24, 3000 (2003).Search in Google Scholar

30. doi:10.1021/cm0347887, D. Lu, G. Hitoki, Kato, M. Hara, T. Takata, J. N. Kondo, K. Domen. Chem. Mater. 16, 1603 (2004).Search in Google Scholar

31. doi:10.1021/jp048802u, A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, K. Domen. J. Phys. Chem. B 108, 11049 (2004).Search in Google Scholar

32. doi:10.1021/ja0269643, A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen. J. Am. Chem. Soc. 124, 13547 (2002).Search in Google Scholar

33. doi:10.1021/jp036890x, A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen. J. Phys. Chem. B 108, 2637 (2004).Search in Google Scholar

34. doi:10.1021/cm034540h, A. Ishikawa, Y. Yamada, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen. Chem. Mater. 15, 4442 (2003).Search in Google Scholar

35. doi:10.1039/b107673f, K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa. Chem. Commun. 2416 (2001).Search in Google Scholar

36. K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa. J. Photochem. Photobiol., A 148, 71 (2002).10.1016/S1010-6030(02)00070-9Search in Google Scholar

37. doi:10.1039/b505646b, R. Abe, T. Takata, H. Sugihara, K. Domen. Chem. Commun. 3829 (2005).Search in Google Scholar

38. doi:10.1038/440295a, K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen. Nature 440, 295 (2006).Search in Google Scholar

39. doi:10.1246/cl.1999.1197, A. Kudo, S. Nakagawa, H. Kato. Chem. Lett. 1197 (1999).Search in Google Scholar

40. doi:10.1021/jp9919056, A. Kudo, H. Kato, S. Nakagawa. J. Phys. Chem. B 104, 571 (2000).Search in Google Scholar

41. doi:10.1246/cl.2005.54, Y. Miseki, H. Kato, A. Kudo. Chem. Lett. 34, 54 (2005).Search in Google Scholar

42. doi:10.1246/cl.2006.1052, Y. Miseki, H. Kato, A. Kudo. Chem. Lett. 35, 1052 (2006).Search in Google Scholar

43. doi:10.1016/S0009-2614(98)01001-X, H. Kato, A. Kudo. Chem. Phys. Lett. 295, 487 (1998).Search in Google Scholar

44. doi:10.1021/jp004386b, H. Kato, A. Kudo. J. Phys. Chem. B 105, 4285 (2001).Search in Google Scholar

45. doi:10.1021/ja027751g, H. Kato, K. Asakura, A. Kudo. J. Am. Chem. Soc. 125, 3082 (2003).Search in Google Scholar

46. doi:10.1246/cl.2005.946, A. Iwase, H. Kato, A. Kudo. Chem. Lett. 34, 945 (2005).Search in Google Scholar

47. doi:10.1016/j.jcat.2005.02.021, K. Yoshioka, V. Petrykin, M. Kakihana, H. Kato, A. Kudo. J. Catal. 232, 102 (2005).Search in Google Scholar

48. doi:10.1246/cl.1997.867, A. Kudo, H. Kato. Chem. Lett. 867 (1997).Search in Google Scholar

49. doi:10.1246/cl.2006.274, T. Kurihara, H. Okutomi, Y. Miseki, H. Kato, A. Kudo. Chem. Lett. 35, 274 (2006).Search in Google Scholar

50. doi:10.1246/cl.2000.1212, A. Kudo, H. Okutomi, H. Kato. Chem. Lett. 1212 (2000).Search in Google Scholar

51. doi:10.1021/jp025974n, H. Kato, H. Kobayashi, A. Kudo. J. Phys. Chem. B 106, 12441 (2002).Search in Google Scholar

52. doi:10.1021/jp0255482, H. Kato, A. Kudo. J. Phys. Chem. B 106, 5029 (2002).Search in Google Scholar

53. T. Ishii, H. Kato, A. Kudo. J. Photochem. Photobiol., A 163, 181 (2004).10.1016/S1010-6030(03)00442-8Search in Google Scholar

54. doi:10.1021/jp049556p, R. Konta, T. Ishii, H. Kato, A. Kudo. J. Phys. Chem. B 108, 8992 (2004).Search in Google Scholar

55. doi:10.1039/b502147b, R. Niishiro, H. Kato, A. Kudo. Phys. Chem. Chem. Phys. 7, 2241 (2005).Search in Google Scholar

56. doi:10.1246/bcsj.80.885, Y. Shimodaira, H. Kato, H. Kobayashi, A. Kudo. Bull. Chem. Soc. Jpn. 80, 885 (2007).Search in Google Scholar

57. doi:10.1246/cl.2004.28, Y. Hosogi, K. Tanabe, H. Kato, H. Kobayashi, A. Kudo. Chem. Lett. 33, 28 (2004).Search in Google Scholar

58. doi:10.1023/A:1019034728816, A. Kudo, K. Ueda, H. Kato, I. Mikami. Catal. Lett. 53, 229 (1998).Search in Google Scholar

59. doi:10.1021/ja992541y, A. Kudo, K. Omori, H. Kato. J. Am. Chem. Soc. 121, 11459 (1999).Search in Google Scholar

60. doi:10.1021/cm0103390, S. Tokunaga, H. Kato, A. Kudo. Chem. Mater. 13, 4624 (2001).Search in Google Scholar

61. doi:10.1002/adfm.200500799, J. Yu, A. Kudo. Adv. Funct. Mater. 16, 2163 (2006).Search in Google Scholar

62. doi:10.1021/jp0622482, Y. Shimodaira, H. Kato, H. Kobayashi, A. Kudo. J. Phys. Chem. B. 110, 17790 (2006).Search in Google Scholar

63. doi:10.1246/cl.1999.1103, A. Kudo, S. Hijii. Chem. Lett. 1103 (1999).Search in Google Scholar

64. doi:10.1039/b300179b, R. Konta, H. Kato, H. Kobayashi, A. Kudo. Phys. Chem. Chem. Phys. 5, 3061 (2003).Search in Google Scholar

65. doi:10.1023/A:1019067025917, A. Kudo, M. Sekizawa. Catal. Lett. 58, 241 (1999).Search in Google Scholar

66. doi:10.1039/b003297m, A. Kudo, M. Sekizawa. Chem. Commun. 1371 (2000).Search in Google Scholar

67. I. Tsuji, A. Kudo. J. Photochem. Photobiol., A 156, 249 (2003).10.1016/S1010-6030(02)00433-1Search in Google Scholar

68. doi:10.1246/cl.2002.882, A. Kudo, A. Nagane, I. Tsuji, H. Kato. Chem. Lett. 882 (2002).Search in Google Scholar

69. doi:10.1016/j.ijhydene.2005.04.050, A. Kudo. Int. J. Hydrogen Energy 31, 197 (2006).Search in Google Scholar

70. doi:10.1039/b204259b, A. Kudo, I. Tsuji, H. Kato. Chem. Commun. 1958 (2002).Search in Google Scholar

71. doi:10.1021/ja048296m, I. Tsuji, H. Kato, H. Kobayashi, A. Kudo. J. Am. Chem. Soc. 126, 13406 (2004).Search in Google Scholar

72. doi:10.1021/jp044722e, I. Tsuji, H. Kato, H. Kobayashi, A. Kudo. J. Phys. Chem. B 109, 7323 (2005).Search in Google Scholar

73. doi:10.1002/anie.200500314, I. Tsuji, H. Kato, A. Kudo. Angew. Chem., Int. Ed. 44, 3565 (2005).Search in Google Scholar

74. doi:10.1021/cm0527017, I. Tsuji, H. Kato, A. Kudo. Chem. Mater. 18, 1969 (2006).Search in Google Scholar

75. doi:10.1246/cl.1998.1027, A. Kudo, I. Mikami. Chem. Lett. 1027 (1998).Search in Google Scholar

76. doi:10.1246/cl.2004.1348, H. Kato, M. Hori, Y. Konta, Y. Shimodaira, A. Kudo. Chem. Lett. 33, 1348 (2004).Search in Google Scholar

77. doi:10.1021/jp036473k, A. Yamakata, T. Ishibashi, H. Kato, A. Kudo, H. Onishi. J. Phys. Chem. B 107, 14383 (2003).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2007-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.6.2024 from https://www.degruyter.com/document/doi/10.1351/pac200779111917/html
Scroll to top button