Skip to content
Publicly Available Published by De Gruyter May 7, 2013

Glycan synthesis, structure, and dynamics: A selection

  • Robert Pendrill , K. Hanna M. Jonsson and Göran Widmalm

Glycan structural information is a prerequisite for elucidation of carbohydrate function in biological systems. To this end we employ a tripod approach for investigation of carbohydrate 3D structure and dynamics based on organic synthesis; different experimental spectroscopy techniques, NMR being of prime importance; and molecular simulations using, in particular, molecular dynamics (MD) simulations. The synthesis of oligosaccharides in the form of glucosyl fluorides is described, and their use as substrates for the Lam16A E115S glucosyl synthase is exemplified as well as a conformational analysis of a cyclic β-(1→3)-heptaglucan based on molecular simulations. The flexibility of the N-acetyl group of aminosugars is by MD simulations indicated to function as a gatekeeper for transitions of glycosidic torsion angles to other regions of conformational space. A novel approach to visualize glycoprotein (GP) structures is presented in which the protein is shown by, for example, ribbons, but instead of stick or space-filling models for the carbohydrate portion it is visualized by the colored geometrical figures known as CFG representation in a 3D way, which we denote 3D-CFG, thereby effectively highlighting the sugar residues of the glycan part of the GP and the position(s) on the protein.


Conference

, 2012-07-22 - 2012-07-27, International Carbohydrate Symposium (ICS 2012), 26th, Madrid, Spain


H.-J. Gabius, S. André, J. Jiménez-Barbero, A. Romero, D. Solís. Trends Biochem. Sci.36, 298 (2011). (http://dx.doi.org/10.1016/j.tibs.2011.01.005)Search in Google Scholar PubMed

G. A. Rabinovich, Y. van Kooyk, B. A. Cobb. Ann. N.Y. Acad. Sci.1253, 1 (2012). (http://dx.doi.org/10.1111/j.1749-6632.2012.06492.x)Search in Google Scholar PubMed PubMed Central

S. Sato, M. Quellet, C. St-Pierre, M. J. Trembley. Ann. N.Y. Acad. Sci.1253, 133 (2012). (http://dx.doi.org/10.1111/j.1749-6632.2012.06475.x)Search in Google Scholar PubMed

H.-C. Siebert, S. André, S.-Y. Lu, M. Frank, H. Kaltner, J. A. van Kuik, E. Y. Korchagina, N. Bovin, E. Tajkhorshid, R. Kaptein, J. F. G. Vliegenthart, C.-W. von der Lieth, J. Jiménez-Barbero, J. Kopitz, H.-J. Gabius. Biochemistry42, 14762 (2003). (http://dx.doi.org/10.1021/bi035477c)Search in Google Scholar PubMed

M. Nagae, Y. Yamaguchi. Int. J. Mol. Sci.13, 8398 (2012). (http://dx.doi.org/10.3390/ijms13078398)Search in Google Scholar PubMed PubMed Central

M. Kuttel, Y. Mao, G. Widmalm, M. Lundborg. Proc. 7thIEEE Int. Conf. eScience, 395 (2011). (http://dx.doi.org/10.1109/eScience.2011.61)Search in Google Scholar

B. O. Petersen, M. Krah, J. Ø. Duus, K. K. Thomsen. Eur. J. Biochem.267, 361 (2000). (http://dx.doi.org/10.1046/j.1432-1327.2000.01008.x)Search in Google Scholar PubMed

M. Faijes, A. Planas. Carbohydr. Res.342, 1581 (2007). (http://dx.doi.org/10.1016/j.carres.2007.06.015)Search in Google Scholar PubMed

J.-L. Viladot, V. Moreau, A. Planas, H. Driguez. J. Chem. Soc., Perkin Trans. 12383 (1997). (http://dx.doi.org/10.1039/a701431g)Search in Google Scholar

B. Cobucci-Ponzano, M. Moracci. Nat. Prod. Rep.29, 697 (2012). (http://dx.doi.org/10.1039/c2np20032e)Search in Google Scholar PubMed

M. Yokoyama. Carbohydr. Res.327, 5 (2000). (http://dx.doi.org/10.1016/S0008-6215(99)00324-9)Search in Google Scholar

L. F. Mackenzie, Q. Wang, R. A. J. Warren, S. G. Withers. J. Am. Chem. Soc.120, 5583 (1998). (http://dx.doi.org/10.1021/ja980833d)Search in Google Scholar

C. Malet, A. Planas. FEBS Lett.440, 208 (1998). (http://dx.doi.org/10.1016/S0014-5793(98)01448-3)Search in Google Scholar

V. Boyer, S. Fort, T. P. Frandsen, M. Schülein, S. Cottaz, H. Driguez. Chem.—Eur. J.8, 1389 (2002). (http://dx.doi.org/10.1002/1521-3765(20020315)8:6<1389::AID-CHEM1389>3.0.CO;2-#)Search in Google Scholar

R. Fauré, M. Saura-Valls, H. Brumer, A. Planas, S. Cottaz, H. Driguez. J. Org. Chem.71, 5151 (2006). (http://dx.doi.org/10.1021/jo0525682)Search in Google Scholar

J. Vasur, R. Kawai, E. Andersson, K. Igarashi, M. Sundgren, M. Samejima, J. Ståhlberg. FEBS J.276, 3858 (2009). (http://dx.doi.org/10.1111/j.1742-4658.2009.07099.x)Search in Google Scholar

J. Vasur, R. Kawai, K. H. M. Jonsson, G. Widmalm, Å. Engström, M. Frank, E. Andersson, H. Hansson, Z. Forsberg, K. Igarashi, M. Samejima, M. Sandgren, J. Ståhlberg. J. Am. Chem. Soc.132, 1724 (2010). (http://dx.doi.org/10.1021/ja909129b)Search in Google Scholar

J. Ståhlberg, J. Vasur, R. Kawai, K. H. M. Jonsson, G. Widmalm. Unpublished results.Search in Google Scholar

O. Guvench, E. Hatcher, R. M. Venable, R. W. Pastor, A. D. MacKerell Jr. J. Chem. Theory Comput.5, 2353 (2009). (http://dx.doi.org/10.1021/ct900242e)Search in Google Scholar

G. Widmalm, R. W. Pastor. J. Chem. Soc., Faraday Trans.88, 1747 (1992). (http://dx.doi.org/10.1039/ft9928801747)Search in Google Scholar

E. Säwén, T. Massad, C. Landersjö, P. Damberg, G. Widmalm. Org. Biomol. Chem.8, 3684 (2010). (http://dx.doi.org/10.1039/c003958f)Search in Google Scholar

B. J. Hardy, W. Egan, G. Widmalm. Int. J. Biol. Macromol.17, 149 (1995). (http://dx.doi.org/10.1016/0141-8130(95)92681-F)Search in Google Scholar

U. Olsson, A. S. Serianni, R. Stenutz. J. Phys. Chem. B112, 4447 (2008). (http://dx.doi.org/10.1021/jp710977k)Search in Google Scholar

M. Zaccheus, R. Pendrill, T. A. Jackson, A. Wang, F.-I. Auzanneau, G. Widmalm. Eur. J. Org. Chem.4705 (2012). (http://dx.doi.org/10.1002/ejoc.201200569)Search in Google Scholar

E. Säwén, B. Stevensson, J. Östervall, A. Maliniak, G. Widmalm. J. Phys. Chem. B115, 7109 (2011). (http://dx.doi.org/10.1021/jp2017105)Search in Google Scholar

P. Cagas, K. Kaluarachchi, C. A. Bush. J. Am. Chem. Soc.113, 6815 (1991). (http://dx.doi.org/10.1021/ja00018a016)Search in Google Scholar

S. Kornfeld, E. Li, I. Tabas. J. Biol. Chem.253, 7771 (1978).10.1016/S0021-9258(17)34436-8Search in Google Scholar

A. Varki, R. D. Cummings, J. D. Esko, H. H. Freeze, P. Stanley, J. D. Marth, C. R. Bertozzi, G. W. Hart, M. E. Etzler. Proteomics9, 5398 (2009). (http://dx.doi.org/10.1002/pmic.200900708)Search in Google Scholar

N. Noinaj, N. C. Easley, M. Oke, N. Mizuno, J. Gumbart, E. Boura, A. S. Steere, O. Zak, P. Aisen, E. Tajkhorshid, R. W. Evans, A. R. Gorringe, A. B. Mason, A. C. Steven, S. K. Buchanan. Nature483, 53 (2012). (http://dx.doi.org/10.1038/nature10823)Search in Google Scholar

B. R. Brooks, C. L. Brooks III, A. D. MacKerell Jr., L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, M. Karplus. J. Comput. Chem.30, 1545 (2009). (http://dx.doi.org/10.1002/jcc.21287)Search in Google Scholar

O. Guvench, S. S. Mallajosyula, E. P. Raman, E. Hatcher, K. Vanommeslaeghe, T. J. Foster, F. W. Jamison II, A. D. Mackerell Jr. J. Chem. Theory Comput.7, 3162 (2011). (http://dx.doi.org/10.1021/ct200328p)Search in Google Scholar

R. Eklund, G. Widmalm. Carbohydr. Res.338, 393 (2003). (http://dx.doi.org/10.1016/S0008-6215(02)00503-7)Search in Google Scholar

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein. J. Chem. Phys.79, 926 (1983). (http://dx.doi.org/10.1063/1.445869)Search in Google Scholar

S. R. Durell, B. R. Brooks, A. Ben-Naim. J. Phys. Chem.98, 2198 (1994). (http://dx.doi.org/10.1021/j100059a038)Search in Google Scholar

J. W. Eaton, D. Bateman, S. Hauberg. GNU Octave Manual Version 3, Network Theory Ltd.Search in Google Scholar

Published Online: 2013-5-7
Published in Print: 2013-9-1

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.6.2024 from https://www.degruyter.com/document/doi/10.1351/pac-con-12-10-17/html
Scroll to top button