Skip to content
Publicly Available Published by De Gruyter January 1, 2009

Nanostructured anode materials for Li-ion batteries

  • Nahong Zhao , Lijun Fu , Lichun Yang , Tao Zhang , Gaojun Wang , Yuping Wu and Teunis van Ree

Abstract

This paper focuses on the latest progress in the preparation of a series of nanostructured anode materials in our laboratory and their electrochemical properties for Li-ion batteries. These anode materials include core-shell structured Si nanocomposites, TiO2 nanocomposites, novel MoO2 anode material, and carbon nanotube (CNT)-coated SnO2 nanowires (NWs). The substantial advantages of these nanostructured anodes provide greatly improved electrochemical performance including high capacity, better cycling behavior, and rate capability.


Conference

International Symposium on Novel Materials and Their Synthesis (NMS-III) and the 17th International Symposium on Fine Chemistry and Functional Polymers (FCFP-XVII), Novel Materials and their Synthesis, NMS, Novel Materials and their Synthesis, 3rd, Shanghai, China, 2007-10-17–2007-10-21


References

1. doi:10.1038/nmat1513, J. Maier. Nat. Mater. 4, 805 (2005).Search in Google Scholar

2. doi:10.1038/nmat1368, A. S. Arico, P. G. Bruce, B. Scrosati, J. M. Tarascon, W. V. Schalkwijk. Nat. Mater. 4, 366 (2005).Search in Google Scholar

3. doi:10.1039/b603559k, J. Maier. Faraday Discuss. 134, 51 (2007).Search in Google Scholar

4. doi:10.1103/PhysRevLett.96.058302, Y. F. Zhukovskii, P. Balaya, E. A. Kotomin, J. Maier. Phys. Rev. Lett. 96, 58302 (2006).Search in Google Scholar

5. doi:10.1149/1.1391134, N. Li, C. R. Martin, B. Scrosati. Electrochem. Solid State Lett. 3, 316 (2000).Search in Google Scholar

6. doi:10.1149/1.1342167, N. Li, C. R. Martin. J. Electrochem. Soc. 148, A164 (2001).Search in Google Scholar

7. doi:10.1016/S0013-4686(99)00191-7, M. Winter, J. O. Besenhard. Electrochim. Acta 45, 31 (1999).Search in Google Scholar

8. doi:10.1149/1.2142295, T. Moritaz, N. Takami. J. Electrochem. Soc. 153, A425 (2006).Search in Google Scholar

9. doi:10.1002/anie.200501663, F. Jiao, K. M. Shaju, P. G. Bruce. Angew. Chem., Int. Ed. 44, 6550 (2005).Search in Google Scholar

10. doi:10.1351/pac200678101889, T. Zhang, L. J. Fu, J. Gao, L. C. Yang, Y. P. Wu, H. Q. Wu. Pure Appl. Chem. 78, 1889 (2006).Search in Google Scholar

11. doi:10.1016/j.elecom.2006.11.026, T. Zhang, J. Gao, H. P. Zhang, L. C. Yang, Y. P. Wu, H. Q. Wu. Electrochem. Commun. 9, 886 (2007).Search in Google Scholar

12. doi:10.1016/j.elecom.2005.10.006, L. J. Fu, H. Liu, H. P. Zhang, C. Li, T. Zhang, Y. P. Wu, R. Holze, H. Q. Wu. Electrochem. Commun. 8, 1 (2006).Search in Google Scholar

13. doi:10.1016/j.elecom.2007.06.009, L. J. Fu, T. Zhang, Q. Cao, H. P. Zhang, Y. P. Wu. Electrochem. Commun. 9, 2140 (2007).Search in Google Scholar

14. doi:10.1016/j.elecom.2007.11.009, L. C. Yang, Q. S. Gao, Y. H. Zhang, Y. Tang, Y. P. Wu. Electrochem. Commun. 10, 118 (2008).Search in Google Scholar

15. doi:10.1021/cm703353y, N. H. Zhao, G. J. Wang, Y. Huang, B. Wang, B. D. Yao, Y. P. Wu. Chem. Mater. 20, 2612 (2008).Search in Google Scholar

16. Y. P. Wu, X. B. Dai, J. Q. Ma, Y. J. Chen. Lithium Ion BatteriesPractice and Applications, Chemical Industry Press, Beijing (2004).Search in Google Scholar

17. doi:10.1016/S0378-7753(96)02547-5, J. O. Bensenhard, J. Yang, M. Winter. J. Power Sources 68, 87 (1997).Search in Google Scholar

18. doi:10.1016/S0167-2738(00)00362-3, H. Li, X. Huang, L. Chen. Solid State Ionics 135, 181 (2000).Search in Google Scholar

19. doi:10.1149/1.2142295, T. Moritaz, N. Takami. J. Electrochem. Soc. 153, A425 (2006).Search in Google Scholar

20. doi:10.1016/j.elecom.2004.03.012, Y. Zhang, Z. W. Fu, Q. Z. Qin. Electrochem. Commun. 6, 484 (2004).Search in Google Scholar

21. doi:10.1149/1.1818021, Y. Liu, K. Hanai, T. Matsumura, N. Imanishi, A. Hirano, Y. Takeda. Electrochem. Solid State Lett. 7, A492 (2004).Search in Google Scholar

22. doi:10.1149/1.1375176, S. Hwang, H. Lee, S. Jang, S. Lee, H. Baik, J. Lee. Electrochem. Solid State Lett. 4, A97 (2001).Search in Google Scholar

23. doi:10.1149/1.1906025, J. R. Dahn, J. W. Jiang, L. M. Moshurchak, M. D. Fleischauer, C. Buhrmester, L. J. Krause. J. Electrochem. Soc. 152, A1283 (2005).Search in Google Scholar

24. doi:10.1038/nmat904, P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Gratzel. Nat. Mater. 2, 402 (2003).Search in Google Scholar

25. doi:10.1021/cr00033a003, A. Hagfeldt, M. Gratzel. Chem. Rev. 95, 49 (1995).Search in Google Scholar

26. doi:10.1126/science.276.5314.926, Z.-R. Tian, W. Tong, J.-Y. Wang, N.-G. Duan, V. V. Krishnan, S. L. Suib. Science 276, 926 (1997).Search in Google Scholar

27. doi:10.1111/j.1151-2916.1990.tb05257.x, Y. C. Yeh, T. T. Tseng, D. A. Chang. J. Am. Ceram. Soc. 73, 1992 (1990).Search in Google Scholar

28. doi:10.1149/1.1597883, Y. K. Zhou, L. Cao, F. B. Zhang, B. L. He, H. L. Li. J. Electrochem. Soc. 150, A1246 (2003).Search in Google Scholar

29. A. H. Whitehead, J. M. Elliott, J. R. Owen. J. Power Sources 33, 81 (1999).10.1016/S0378-7753(99)00126-3Search in Google Scholar

30. doi:10.1149/1.1392584, J. Yang, Y. Takeda, N. Imanishi, O. Yamamoto. J. Electrochem. Soc. 146, 4009 (1999).Search in Google Scholar

31. doi:10.1016/S0378-7753(99)00180-9, J. Yang, Y. Takeda, N. Imanishi, T. Ichikawa, O. Yamamoto. J. Power Sources 79, 220 (1999).Search in Google Scholar

32. doi:10.1149/1.1391134, N. Li, C. R. Martin, B. Scrosati. Electrochem. Solid State Lett. 3, 316 (2000).Search in Google Scholar

33. doi:10.1149/1.1342167, N. Li, C. R. Martin. J. Electrochem. Soc. 148, A164 (2001).Search in Google Scholar

34. doi:10.1149/1.1391189, I. Kim, P. N. Kumta, G. E. Blomgren. Electrochem. Solid State Lett. 3, 493 (2000).Search in Google Scholar

35. doi:10.1149/1.1375176, S. Hwang, H. Lee, S. Jang, S. M. Lee, S. J. Lee, H. Baik, J. Lee. Electrochem. Solid State Lett. 4, A97 (2001).Search in Google Scholar

36. doi:10.1021/ja0345524, K. T. Lee, Y. S. Jung, S. M. Oh. J. Am. Chem. Soc. 125, 5652 (2003).Search in Google Scholar

37. doi:10.1039/b605090e, Y. G. Guo, Y. S. Hu, J. Maier. Chem. Commun. 26, 2783 (2006).Search in Google Scholar

38. doi:10.1149/1.2159297, B. Zhang, Y. Yuan, Y. Wang, Z. W. Fu. Electrochem. Solid State Lett. 9, A101 (2006).Search in Google Scholar

39. doi:10.1149/1.2100521, J. J. Auborn, Y. L. Barberio. J. Electrochem. Soc. 134, 638 (1987).Search in Google Scholar

40. doi:10.1016/j.matchemphys.2005.03.034, Y. Liang, S. Yang, Z. Yi, J. Sun, Y. Zhou. Mater. Chem. Phys. 93, 395 (2005).Search in Google Scholar

41. doi:10.1002/anie.200501663, F. Jiao, K. M. Shaju, P. G. Bruce. Angew. Chem., Int. Ed. 44, 6550 (2005).Search in Google Scholar

42. doi:10.1149/1.2349490, H. Liu, L. J. Fu, H. P. Zhang, J. Gao, C. Li, Y. P. Wu, H. Q. Wu. Electrochem. Solid State Lett. 9, A529 (2006).Search in Google Scholar

43. doi:10.1039/b208990b, C. N. R. Rao, M. Nath. Dalton Trans. 1, 1 (2003).Search in Google Scholar

44. doi:10.1002/1521-3773(20020715)41:14<2446::AID-ANIE2446>3.0.CO;2-K, B. Patzke, F. Krumeich, R. Nesper. Angew. Chem., Int. Ed. 41, 2446 (2002).Search in Google Scholar

45. doi:10.1021/jp0526905, W. Yu, X. Li, X. Gao, F. Wu. J. Phys. Chem. B 109, 17078 (2005).Search in Google Scholar

46. doi:10.1021/jp0125552, J. Hu, X. Ma, N. Shang, Z. Xie, N. Wong, C. Lee, S. Lee. J. Phys. Chem. B 106, 3823 (2002).Search in Google Scholar

47. doi:10.1126/science.1058120, Z. Pan, Z. Dai, L. Wang. Science 291, 1947 (2001).Search in Google Scholar

48. doi:10.1021/jp013214r, Z. Dai, J. Gole, J. Stout, Z. Wang. J. Phys. Chem. B 106, 1274 (2002).Search in Google Scholar

49. doi:10.1002/adma.200301641, R. Zhang, Y. Lifshitz, S. Lee. Adv. Mater. 15, 635 (2003).Search in Google Scholar

50. doi:10.1021/jp046859a, N. Ramgir, I. Mulla, K. Vijayamohanan. J. Phy. Chem. B 108, 14815 (2004).Search in Google Scholar

51. doi:10.1021/ja037743f, Y. Wang, X. Jiang, Y. Xia. J. Am. Chem. Soc. 125, 16176 (2003).Search in Google Scholar

52. doi:10.1021/cm010084q, M. Zheng, G. Li, X. Zhang, S. Huang, Y. Lei, L. Zhang. Chem. Mater. 13, 3859 (2001).Search in Google Scholar

53. doi:10.1002/cphc.200500452, H. Cao, X. Qiu, Y. Liang, L. Zhang, M. Zhao, Q. Zhu. ChemPhysChem 7, 497 (2006).Search in Google Scholar

54. doi:10.1016/j.jpowsour.2007.12.099, L. C. Yang, Q. S. Gao, Y. Tang, Y. P. Wu, R. Holze. J. Power Sources 179, 357 (2008).Search in Google Scholar

55. L. J. Fu, H. P. Zhang, Q. Cao, G. J. Wang, L. C. Yang, Y. P. Wu. Microporous Mesoporous Mater. (2008). Accepted for publication.Search in Google Scholar

56. doi:10.1002/adfm.200400429, W.-Y. Li, L.-N. Xu, J. Chen. Adv. Funct. Mater. 15, 851 (2005).Search in Google Scholar

57. doi:10.1166/jnn.2006.103, H. K. Liu, G. X. Wang, Z. Guo, J. Wang, K. Konstantinov. J. Nanosci. Nanotechnol. 6, 1 (2006).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2008-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1351/pac200880112283/html
Scroll to top button