Skip to content
Publicly Available Published by De Gruyter January 1, 2009

Oxygenases for oxygen sensing

  • Christoph Loenarz , Rasheduzzaman Chowdhury , Christopher J. Schofield and Emily Flashman

Abstract

In animals, cellular and physiological responses to oxygen level variations are regulated via the post-translational modification of the heterodimeric hypoxia-inducible transcription factor (HIF). Hydroxylation of the HIF-α subunit at either of two conserved prolyl residues enables binding to the von Hippel-Lindau protein (pVHL) elongin C/B complex (VCB) which targets HIF-α for degradation via the ubiquitin proteasome pathway. Hydroxylation of an asparaginyl residue in the C-terminal transcriptional activation domain of HIF-α reduces its interaction with the transcriptional coactivator p300. Thus, post-translational hydroxylation is used both to "make" (HIF-VCB) and "break" (HIF-p300) protein-protein interactions in the hypoxic response. The requirement for oxygen of the HIF prolyl and asparaginyl hydroxylases in catalysis links changes in oxygen concentration and transcription of the gene array that enables cells to adapt to hypoxia. All four identified human HIF hydroxylases are members of the Fe(II) and 2-oxoglutarate (2OG)-dependent family of oxygenases. Inhibition of HIF hydroxylases mimics the hypoxic response resulting in the upregulation of erythropoietin (EPO), vascular endothelial growth factor (VEGF), and other proteins of biomedicinal importance. We briefly review biochemical analyses on the HIF hydroxylases and discuss how their structural and mechanistic characteristics may make them suited to their oxygen-sensing role.


Conference

CHEM-BIO-TECH-2007, a joint meeting of the IUPAC 1st Symposium on Chemical Biotechnology (ISCB-1) and the 8th Symposium on Bioorganic Chemistry (ISBOC-8), International Symposium on Bioorganic Chemistry, ISBOC, Bioorganic Chemistry, Turin, Italy, 2007-08-08–2007-08-11


References

1. doi:10.1073/pnas.92.12.5510, G. L. Wang, B. H. Jiang, E. A. Rue, G. L. Semenza. Proc. Natl. Acad. Sci. USA 92, 5510 (1995).Search in Google Scholar

2. doi:10.1073/pnas.88.13.5680, G. L. Semenza, M. K. Nejfelt, S. M. Chi, S. E. Antonarakis. Proc. Natl. Acad. Sci. USA 88, 5680 (1991).Search in Google Scholar

3. doi:10.1124/mol.106.027029, Q. Ke, M. Costa. Mol. Pharmacol. 70, 1469 (2006).Search in Google Scholar

4. doi:10.1016/j.bbrc.2005.08.165, W. G. Kaelin Jr. Biochem. Biophys. Res. Commun. 338, 627 (2005).Search in Google Scholar

5. doi:10.1038/nrm1366, C. J. Schofield, P. J. Ratcliffe. Nat. Rev. Mol. Cell. Biol. 5, 343 (2004).Search in Google Scholar

6. doi:10.1152/physiol.00001.2004, G. L. Semenza. Physiology (Bethesda) 19, 176 (2004).Search in Google Scholar

7. doi:10.1126/science.1059817, M. Ivan, K. Kondo, H. F. Yang, W. Kim, J. Valiando, M. Ohh, A. Salic, J. M. Asara, W. S. Lane, W. G. Kaelin. Science 292, 464 (2001).Search in Google Scholar

8. doi:10.1126/science.1059796, P. Jaakkola, D. R. Mole, Y. M. Tian, M. I. Wilson, J. Gielbert, S. J. Gaskell, A. von Kriegsheim, H. F. Hebestreit, M. Mukherji, C. J. Schofield, P. H. Maxwell, C. W. Pugh, P. J. Ratcliffe. Science 292, 468 (2001).Search in Google Scholar

9. doi:10.1126/science.1068592, D. Lando, D. J. Peet, D. A. Whelan, J. J. Gorman and M. L. Whitelaw. Science 295, 858 (2002).Search in Google Scholar

10. doi:10.1016/S1359-6446(04)03202-7, K. S. Hewitson, C. J. Schofield. Drug Discov. Today 9, 704 (2004).Search in Google Scholar

11. doi:10.1016/j.bcp.2006.10.013, M. C. Brahimi-Horn, J. Pouyssegur. Biochem. Pharmacol. 73, 450 (2007).Search in Google Scholar

12. doi:10.1517/14728222.10.2.267, G. L. Semenza. Expert Opin. Ther. Targets 10, 267 (2006).Search in Google Scholar

13. doi:10.1042/BSE0430001, M. L. Coleman, P. J. Ratcliffe. Essays Biochem. 43, 1 (2007).Search in Google Scholar

14. doi:10.1515/BC.2004.016, E. Metzen, P. J. Ratcliffe. Biol. Chem. 385, 223 (2004).Search in Google Scholar

15. doi:10.1038/nchembio863, A. Ozer, R. K. Bruick. Nat. Chem. Biol. 3, 144 (2007).Search in Google Scholar

16. doi:10.1073/pnas.94.9.4273, M. Ema, S. Taya, N. Yokotani, K. Sogawa, Y. Matsuda, Y. Fujii-Kuriyama. Proc. Natl. Acad. Sci. USA 94, 4273 (1997).Search in Google Scholar

17. Y. Z. Gu, S. M. Moran, J. B. Hogenesch, L. Wartman, C. A. Bradfield. Gene Expr. 7, 205 (1998).Search in Google Scholar

18. doi:10.1038/35107085, Y. Makino, R. H. Cao, K. Svensson, G. R. Bertilsson, M. Asman, H. Tanaka, Y. H. Cao, A. Berkenstam, L. Poellinger. Nature 414, 550 (2001).Search in Google Scholar

19. doi:10.1093/emboj/20.18.5197, N. Masson, C. Willam, P. H. Maxwell, C. W. Pugh, P. J. Ratcliffe. EMBO J. 20, 5197 (2001).Search in Google Scholar

20. P. H. Maxwell, C. W. Pugh, P. J. Ratcliffe. Adv. Exp. Med. Biol. 502, 365 (2001).Search in Google Scholar

21. doi:10.1593/neo.06442, M. Ohh. Neoplasia 8, 623 (2006).Search in Google Scholar

22. doi:10.1016/S0959-437X(02)00010-2, W. Kim, W. G. Kaelin Jr. Curr. Opin. Genet. Dev. 13, 55 (2003).Search in Google Scholar

23. doi:10.1128/MCB.22.9.2984-2992.2002, N. Sang, J. Fang, V. Srinivas, I. Leshchinsky, J. Caro. Mol. Cell. Biol. 22, 2984 (2002).Search in Google Scholar

24. doi:10.1016/S1357-2725(03)00211-5, R. J. Kewley, M. L. Whitelaw, A. Chapman-Smith. Int. J. Biochem. Cell. Biol. 36, 189 (2004).Search in Google Scholar

25. doi:10.1126/stke.4072007cm8, G. L. Semenza. Sci. STKE 407, cm8 (2007).Search in Google Scholar

26. D. Peet, S. Linke. Novartis Found. Symp. 272, 37 (2006). See also discussion on pp. 49-53, 131-140.Search in Google Scholar

27. I. P. Stolze, D. R. Mole, P. J. Ratcliffe. Novartis Found. Symp. 272, 15 (2006). See also discussion on pp. 25-36.Search in Google Scholar

28. doi:10.1038/nature00767, W. C. Hon, M. I. Wilson, K. Harlos, T. D. W. Claridge, C. J. Schofield, C. W. Pugh, P. H. Maxwell, P. J. Ratcliffe, D. I. Stuart, E. Y. Jones. Nature 417, 975 (2002).Search in Google Scholar

29. doi:10.1126/science.1073440, J. H. Min, H. F. Yang, M. Ivan, F. Gertler, W. G. Kaelin, N. P. Pavletich. Science 296, 1886 (2002).Search in Google Scholar

30. doi:10.1039/a903001h, C. L. Jenkins, R. T. Raines. Nat. Prod. Rep. 19, 49 (2002).Search in Google Scholar

31. doi:10.1073/pnas.082117899, S. J. Freedman, Z.-Y. J. Sun, F. Poy, A. L. Kung, D. M. Livingston, G. Wagner, M. J. Eck. Proc. Natl. Acad. Sci. USA 99, 5367 (2002).Search in Google Scholar

32. doi:10.1073/pnas.082121399, S. A. Dames, M. Martinez-Yamout, R. N. De Guzman, H. J. Dyson, P. E. Wright. Proc. Natl. Acad. Sci. USA 99, 5271 (2002).Search in Google Scholar

33. doi:10.1042/BJ20021162, L. A. McNeill, K. S. Hewitson, T. D. W. Claridge, J. F. Seibel, L. E. Horsfall, C. J. Schofield. Biochem. J. 367, 571 (2002).Search in Google Scholar

34. doi:10.1126/science.1066373, R. K. Bruick, S. L. McKnight. Science 294, 1337 (2001).Search in Google Scholar

35. doi:10.1016/S0092-8674(01)00507-4, A. C. R. Epstein, J. M. Gleadle, L. A. McNeill, K. S. Hewitson, J. O'Rourke, D. R. Mole, M. Mukherji, E. Metzen, M. I. Wilson, A. Dhanda, Y. M. Tian, N. Masson, D. L. Hamilton, P. Jaakkola, R. Barstead, J. Hodgkin, P. H. Maxwell, C. W. Pugh, C. J. Schofield, P. J. Ratcliffe. Cell 107, 43 (2001).Search in Google Scholar

36. doi:10.1128/MCB.25.15.6415-6426.2005, D. A. Chan, P. D. Sutphin, S. E. Yen, A. J. Giaccia. Mol. Cell. Biol. 25, 6415 (2005).Search in Google Scholar

37. doi:10.1074/jbc.M304982200, M. Hirsila, P. Koivunen, V. Gunzler, K. I. Kivirikko, J. Myllyharju. J. Biol. Chem. 278, 30772 (2003).Search in Google Scholar

38. doi:10.1016/j.bbrc.2006.09.170, M. O. Landazuri, A. Vara-Vega, M. Viton, Y. Cuevas, L. del Peso. Biochem. Biophys. Res. Commun. 351, 313 (2006).Search in Google Scholar

39. doi:10.1016/j.febslet.2005.08.033, R. W. Welford, J. M. Kirkpatrick, L. A. McNeill, M. Puri, N. J. Oldham, C. J. Schofield. FEBS Lett. 579, 5170 (2005).Search in Google Scholar

40. doi:10.1080/10409230490440541, R. P. Hausinger. Crit. Rev. Biochem. Mol. 39, 21 (2004).Search in Google Scholar

41. doi:10.1021/ar700066p, C. Krebs, D. Galonic Fujimori, C. T. Walsh, J. M. Bollinger Jr. Acc. Chem. Res. 40, 484 (2007).Search in Google Scholar

42. doi:10.1016/S0959-440X(99)00036-6, C. J. Schofield, Z. H. Zhang. Curr. Opin. Struct. Biol. 9, 722 (1999).Search in Google Scholar

43. doi:10.1073/pnas.0601283103, M. A. McDonough, V. Li, E. Flashman, R. Chowdhury, C. Mohr, B. M. Lienard, J. Zondlo, N. J. Oldham, I. J. Clifton, J. Lewis, L. A. McNeill, R. J. Kurzeja, K. S. Hewitson, E. Yang, S. Jordan, R. S. Syed, C. J. Schofield. Proc. Natl. Acad. Sci. USA 103, 9814 (2006).Search in Google Scholar

44. doi:10.1039/b511249b, L. A. McNeill, E. Flashman, M. R. Buck, K. S. Hewitson, I. J. Clifton, G. Jeschke, T. D. Claridge, D. Ehrismann, N. J. Oldham, C. J. Schofield. Mol. Biosyst. 1, 321 (2005).Search in Google Scholar

45. doi:10.1042/BJ20061151, D. Ehrismann, E. Flashman, D. N. Genn, N. Mathioudakis, K. S. Hewitson, P. J. Ratcliffe, C. J. Schofield. Biochem. J. 401, 227 (2007).Search in Google Scholar

46. doi:10.1074/jbc.M312254200, P. Koivunen, M. Hirsila, V. Gunzler, K. I. Kivirikko, J. Myllyharju. J. Biol. Chem. 279, 9899 (2004).Search in Google Scholar

47. doi:10.1074/jbc.M604628200, P. Koivunen, M. Hirsila, K. I. Kivirikko, J. Myllyharju. J. Biol. Chem. 281, 28712 (2006).Search in Google Scholar

48. doi:10.1042/BJ20071052, D. Villar, A. Vara-Vega, M. O. Landazuri, L. Del Peso. Biochem. J. 408, 231 (2007).Search in Google Scholar

49. doi:10.1074/jbc.M707411200, E. Flashman, E. A. L. Bagg, R. Chowdhury, J. Mecinovic, C. Loenarz, M. A. McDonough, K. S. Hewitson, C. J. Schofield. J. Biol. Chem. 283, 3808 (2007).Search in Google Scholar

50. doi:10.1182/blood-2007-04-084434, M. J. Percy, P. W. Furlow, P. A. Beer, T. R. Lappin, M. F. McMullin, F. S. Lee. Blood 110, 2193 (2007).Search in Google Scholar

51. doi:10.1073/pnas.0508423103, M. J. Percy, Q. Zhao, A. Flores, C. Harrison, T. R. Lappin, P. H. Maxwell, M. F. McMullin, F. S. Lee. Proc. Natl. Acad. Sci. USA 103, 654 (2006).Search in Google Scholar

52. doi:10.1074/jbc.C200273200, K. S. Hewitson, L. A. McNeill, M. V. Riordan, Y. M. Tian, A. N. Bullock, R. W. D. Welford, J. M. Elkins, N. J. Oldham, S. Battacharya, J. Gleadle, P. J. Ratcliffe, C. W. Pugh, C. J. Schofield. J. Biol. Chem. 277, 26351 (2002).Search in Google Scholar

53. doi:10.1101/gad.991402, D. Lando, D. J. Peet, J. J. Gorman, D. A. Whelan, M. L. Whitelaw, R. K. Bruick. Genes Dev. 16, 1466 (2002).Search in Google Scholar

54. doi:10.1101/gad.924501, P. C. Mahon, K. Hirota, G. L. Semenza. Genes Dev. 15, 2675 (2001).Search in Google Scholar

55. doi:10.1073/pnas.202614999, C. E. Dann III, R. K. Bruick, J. Deisenhofer. Proc. Natl. Acad. Sci. USA 99, 15351 (2002).Search in Google Scholar

56. doi:10.1074/jbc.C200644200, J. M. Elkins, K. S. Hewitson, L. A. McNeill, J. F. Seibel, I. Schlemminger, C. W. Pugh, P. J. Ratcliffe, C. J. Schofield. J. Biol. Chem. 278, 1802 (2003).Search in Google Scholar

57. doi:10.1074/jbc.M210385200, C. Lee, S. J. Kim, D. G. Jeong, S. M. Lee, S. E. Ryu. J. Biol. Chem. 278, 7558 (2003).Search in Google Scholar

58. doi:10.1016/0076-6879(82)82067-3, K. I. Kivirikko, R. Myllyla. Methods Enzymol. 82, 245 (1982).Search in Google Scholar

59. doi:10.1042/0264-6021:3610417, F. M. Vaz, R. J. Wanders. Biochem. J. 361, 417 (2002).Search in Google Scholar

60. doi:10.1002/humu.10315, G. A. Jansen, H. R. Waterham, R. J. Wanders. Hum. Mutat. 23, 209 (2004).Search in Google Scholar

61. doi:10.1074/jbc.M507528200, M. A. McDonough, K. L. Kavanagh, D. Butler, T. Searls, U. Oppermann, C. J. Schofield. J. Biol. Chem. 280, 41101 (2005).Search in Google Scholar

62. doi:10.1073/pnas.86.2.444, J. Stenflo, E. Holme, S. Lindstedt, N. Chandramouli, L. H. T. Huang, J. P. Tam, R. B. Merrifield. Proc. Natl. Acad. Sci. USA 86, 444 (1989).Search in Google Scholar

63. doi:10.1073/pnas.84.2.368, J. Stenflo, A. Lundwall, B. Dahlback. Proc. Natl. Acad. Sci. USA 84, 368 (1987).Search in Google Scholar

64. doi:10.1074/jbc.M110389200, J. E. Dinchuk, R. J. Focht, J. A. Kelley, N. L. Henderson, N. I. Zolotarjova, R. Wynn, N. T. Neff, J. Link, R. M. Huber, T. C. Burn, M. J. Rupar, M. R. Cunningham, B. H. Selling, J. Ma, A. A. Stern, G. F. Hollis, R. B. Stein, P. A. Friedman. J. Biol. Chem. 277, 12970 (2002).Search in Google Scholar

65. doi:10.1016/j.jinorgbio.2005.12.018, Y. Mishina, C. He. J. Inorg. Biochem. 100, 670 (2006).Search in Google Scholar

66. doi:10.1016/j.dnarep.2006.10.005, B. Sedgwick, P. A. Bates, J. Paik, S. C. Jacobs, T. Lindahl. DNA Repair (Amst). 6, 429 (2007).Search in Google Scholar

67. doi:10.1073/pnas.0602235103, E. P. Cummins, E. Berra, K. M. Comerford, A. Ginouves, K. T. Fitzgerald, F. Seeballuck, C. Godson, J. E. Nielsen, P. Moynagh, J. Pouyssegur, C. T. Taylor. Proc. Natl. Acad. Sci. USA 103, 18154 (2006).Search in Google Scholar

68. doi:10.1073/pnas.0436037100, A. V. Kuznetsova, J. Meller, P. O. Schnell, J. A. Nash, M. L. Ignacak, Y. Sanchez, J. W. Conaway, R. C. Conaway, M. F. Czyzyk-Krzeska. Proc. Natl. Acad. Sci. USA 100, 2706 (2003).Search in Google Scholar

69. doi:10.1073/pnas.0606877103, M. E. Cockman, D. E. Lancaster, I. P. Stolze, K. S. Hewitson, M. A. McDonough, M. L. Coleman, C. H. Coles, X. Yu, R. T. Hay, S. C. Ley, C. W. Pugh, N. J. Oldham, N. Masson, C. J. Schofield, P. J. Ratcliffe. Proc. Natl. Acad. Sci. USA 103, 14767 (2006).Search in Google Scholar

70. C. T. Walsh. Posttranslational Modification of Proteins. Expanding Nature's Inventory, Roberts, Englewood, CO (2005).Search in Google Scholar

71. doi:10.1074/jbc.M704102200, M. L. Coleman, M. A. McDonough, K. S. Hewitson, C. Coles, J. Mecinovic, M. Edelmann, K. M. Cook, M. E. Cockman, D. E. Lancaster, B. M. Kessler, N. J. Oldham, P. J. Ratcliffe, C. J. Schofield. J. Biol. Chem. 282, 24027 (2007).Search in Google Scholar

72. K. S. Hewitson, N. Granatino, R. W. Welford, M. A. McDonough, C. J. Schofield. Philos. Transact. A, Math. Phys. Eng. Sci. 363, 807 (2005). See also discussion on pp. 1035-1040.Search in Google Scholar

73. doi:10.1038/nrm2143, R. J. Klose, Y. Zhang. Nat. Rev. Mol. Cell. Biol. 8, 307 (2007).Search in Google Scholar

74. doi:10.1016/S0968-0004(00)01700-X, P. M. Clissold, C. P. Ponting. Trends Biochem. Sci. 26, 7 (2001).Search in Google Scholar

75. doi:10.1038/nature04433, Y. Tsukada, J. Fang, H. Erdjument-Bromage, M. E. Warren, C. H. Borchers, P. Tempst, Y. Zhang. Nature 439, 811 (2006).Search in Google Scholar

76. doi:10.1016/j.cell.2006.03.028, J. R. Whetstine, A. Nottke, F. Lan, M. Huarte, S. Smolikov, Z. Chen, E. Spooner, E. Li, G. Zhang, M. Colaiacovo, Y. Shi. Cell 125, 467 (2006).Search in Google Scholar

77. doi:10.1016/j.cell.2004.12.012, Y. Shi, F. Lan, C. Matson, P. Mulligan, J. R. Whetstine, P. A. Cole, R. A. Casero, Y. Shi. Cell 119, 941 (2004).Search in Google Scholar

78. doi:10.1126/science.1141634, T. M. Frayling, N. J. Timpson, M. N. Weedon, E. Zeggini, R. M. Freathy, C. M. Lindgren, J. R. Perry, K. S. Elliott, H. Lango, N. W. Rayner, B. Shields, L. W. Harries, J. C. Barrett, S. Ellard, C. J. Groves, B. Knight, A. M. Patch, A. R. Ness, S. Ebrahim, D. A. Lawlor, S. M. Ring, Y. BenShlomo, M. R. Jarvelin, U. Sovio, A. J. Bennett, D. Melzer, L. Ferrucci, R. J. Loos, I. Barroso, N. J. Wareham, F. Karpe, K. R. Owen, L. R. Cardon, M. Walker, G. A. Hitman, C. N. Palmer, A. S. Doney, A. D. Morris, G. D. Smith, A. T. Hattersley, M. I. McCarthy. Science 316, 889 (2007).Search in Google Scholar

79. doi:10.1126/science.1151710, T. Gerken, C. A. Girard, Y. C. Tung, C. J. Webby, V. Saudek, K. S. Hewitson, G. S. Yeo, M. A. McDonough, S. Cunliffe, L. A. McNeill, J. Galvanovskis, P. Rorsman, P. Robins, X. Prieur, A. P. Coll, M. Ma, Z. Jovanovic, I. S. Farooqi, B. Sedgwick, I. Barroso, T. Lindahl, C. P. Ponting, F. M. Ashcroft, S. O'Rahilly, C. J. Schofield. Science 318, 1469 (2007).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2008-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1351/pac200880081837/html
Scroll to top button