Skip to content
Publicly Available Published by De Gruyter January 1, 2009

Rhenium-catalyzed synthesis of indene derivatives via C-H bond activation

  • Yoichiro Kuninobu , Yuta Nishina , Atsushi Kawata , Makoto Shouho and Kazuhiko Takai

Abstract

Rhenium complex, [ReBr(CO)3(thf)]2-catalyzed reactions between aromatic imines and either acetylenes or α,β-unsaturated carbonyl compounds gave indene derivatives in good to excellent yields. These reactions proceed via C-H bond activation, insertion of acetylenes or α,β-unsaturated carbonyl compounds, intramolecular nucleophilic cyclization, and reductive elimination. Indene derivatives were also obtained from aromatic ketones and α,β-unsaturated carbonyl compounds in the presence of catalytic amounts of the rhenium complex and p-anisidine. Sequential ruthenium-catalyzed hydroamination of aromatic acetylenes with anilines, and rhenium-catalyzed reactions of the formed aromatic ketimines with α,β-unsaturated carbonyl compounds also provided indene derivatives.


Conference

International Symposium on Organometallic Chemistry Directed Towards Organic Synthesis (OMCOS-14), International Symposium on Organometallic Chemistry Directed Toward Organic Synthesis, OMCOS, Organometallic Chemistry Directed Toward Organic Synthesis, 14th, Nara, Japan, 2007-08-02–2007-08-06


References

1. A. Korte, J. Legros, C. Bolm. Synlett 13, 2397 (2004) and refs. cited therein.Search in Google Scholar

2. (a) U. Akbulut, A. Khurshid, B. Hacio¤lu, L. Toppare. Polymer 31, 1343 (1990);10.1016/0032-3861(90)90228-QSearch in Google Scholar

2. (b) doi:10.1002/(SICI)1521-3773(19980216)37:3<296::AID-ANIE296>3.0.CO;2-U, J. Barbera, O. A. Rakitin, M. B. Ros, T. Torroba. Angew. Chem., Int. Ed. 37, 296 (1998);Search in Google Scholar

2. (c) doi:10.1021/jo991140y, J. Yang, M. V. Lakshmikantham, M. P. Cava. J. Org. Chem. 65, 6739 (2000).Search in Google Scholar

3. (a) doi:10.1016/S0010-8545(99)00163-0, V. Cadierno, J. Diez, G. M. Pilar, J. Gimeno, E. Lastra. Coord. Chem. Rev. 193-195, 147 (1999);Search in Google Scholar

3. (b) doi:10.1016/S0010-8545(02)00201-1, D. Zargarian. Coord. Chem. Rev. 233-234, 157 (2002);Search in Google Scholar

3. (c) doi:10.1002/ejic.200400214, R. Leino, P. Lehmus, A. Lehtonen. Eur. J. Inorg. Chem. 3201 (2004).Search in Google Scholar

4. (a) doi:10.1021/jo00264a030, L. S. Liebeskind, J. R. Gasdaska, J. S. McCallum. J. Org. Chem. 54, 669 (1989);Search in Google Scholar

4. (b) doi:10.1016/0022-328X(89)87157-8, N. P. Robinson, L. Main, B. K. Nicholson. J. Organomet. Chem. 364, C37 (1989);Search in Google Scholar

4. (c) doi:10.1021/ja00095a014, M. F. Semmelhack, S. Ho, D. Cohen, M. Steigerwald, M. C. Lee, G. Lee, A. M. Gilbert, W. D. Wulff, R. G. Ball. J. Am. Chem. Soc. 116, 7108 (1994);Search in Google Scholar

4. (d) doi:10.1021/jo9819638, K. R. Romines, K. D. Lovasz, S. A. Mizsak, J. K. Morris, E. P. Seest, F. Han, J. Tulinsky, T. M. Judge, R. B. Gammill. J. Org. Chem. 64, 1733 (1999);Search in Google Scholar

4. (e) doi:10.1021/jo025828d, Z. Xi, R. Guo, S. Mito, H. Yan, K.-i. Kanno, K. Nakajima, T. Takahashi. J. Org. Chem. 68, 1252 (2003);Search in Google Scholar

4. (f) doi:10.1021/jo049722p, M. Lautens, T. Marquardt. J. Org. Chem. 69, 4607 (2004).Search in Google Scholar

5. doi:10.1038/366529a0, S. Murai, F. Kakiuchi, S. Sekine, Y. Tanaka, A. Kamatani, M. Sonoda, N. Chatani. Nature 336, 529 (1993).Search in Google Scholar

6. (a) F. Kakiuchi, S. Murai. Top. Organomet. Chem. 3, 47 (1999);10.1007/3-540-68525-1_3Search in Google Scholar

6. (b) doi:10.1002/(SICI)1099-0682(199907)1999:7<1047::AID-EJIC1047>3.0.CO;2-B, Y. Guari, S. Sabo-Etienne, B. Chaudret. Eur. J. Inorg. Chem. 1047 (1999);Search in Google Scholar

6. (c) doi:10.1002/(SICI)1521-3773(19990614)38:12<1698::AID-ANIE1698>3.0.CO;2-6, G. Dyker. Angew. Chem., Int. Ed. 38, 1698 (1999).Search in Google Scholar

7. (a) doi:10.1021/ja0528174, Y. Kuninobu, A. Kawata, K. Takai. J. Am. Chem. Soc. 127, 13498 (2005);Search in Google Scholar

7. (b) doi:10.1021/ja054216i, Y. Kuninobu, Y. Tokunaga, A. Kawata, K. Takai. J. Am. Chem. Soc. 128, 202 (2006);Search in Google Scholar

7. (c) doi:10.1002/anie.200503627, Y. Kuninobu, Y. Nishina, M. Shouho, K. Takai. Angew. Chem., Int. Ed. 45, 2766 (2006);Search in Google Scholar

7. (d) doi:10.1021/ol0611292, Y. Kuninobu, Y. Nishina, K. Takai. Org. Lett. 8, 2891 (2006).Search in Google Scholar

8. doi:10.1246/cl.1998.1053, F. Kakiuchi, T. Sato, T. Tsujimoto, M. Yamauchi, N. Chatani, S. Murai. Chem. Lett. 1053 (1998).Search in Google Scholar

9. doi:10.1021/ol048095n, S.-G. Lim, J.-A. Ahn, C.-H. Jun. Org. Lett. 6, 4687 (2004).Search in Google Scholar

10. doi:10.1002/(SICI)1521-3773(19991102)38:21<3222::AID-ANIE3222>3.0.CO;2-7, M. Tokunaga, M. Eckert, Y. Wakatsuki. Angew. Chem., Int. Ed. 38, 3222 (1999).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2008-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 31.5.2024 from https://www.degruyter.com/document/doi/10.1351/pac200880051149/html
Scroll to top button