Skip to content
Publicly Available Published by De Gruyter January 1, 2009

En route to diplatinum polyynediyl complexes trans,trans-(Ar)(R3P)2Pt(C≡C)nPt(PR3)2(Ar): Untold tales, including end-group strategies

  • Jürgen Stahl , James C. Bohling , Thomas B. Peters , Laura de Quadras and John A. Gladysz

Abstract

Reactions of {(C6F5)Pt[S(CH2CH2-)2](μ-Cl)}2 and R3P yield the bis(phosphine) species trans-(C6F5)(R3P)2PtCl [R = Et (Pt'Cl), Ph, (p-CF3C6H4)3P; 88-81 %]. Additions of Pt'Cl and H(C≡C)nH (n = 1, 2; HNEt2, 20 mol % CuI) give Pt'C2H (37 %, plus Pt'I, 16 %) and Pt'C4H (88 %). Homocoupling of Pt'C4H under Hay conditions (O2, CuCl, TMEDA, acetone) gives Pt'C8Pt' (85 %), but Pt'C2H affords only traces of Pt'C4Pt'. However, condensation of Pt'C4H and Pt'Cl (HNEt2, 20 mol % CuI) yields Pt'C4Pt' (97 %). Hay heterocouplings of Pt'C4H or trans-(p-tol)(Ph3P)2Pt(C≡C)2H (Pt*C4H) and excess HC≡CSiEt3 give Pt'C6SiEt3 (76 %) or Pt*C6SiEt3 (89 %). The latter and wet n-Bu4N+ F- react to yield labile Pt*C6H (60 %). Hay homocouplings of Pt*C4H and Pt*C6H give Pt*C8Pt* (64 %) and Pt*C12Pt* (64 %). Reaction of trans-(C6F5)(p-tol3P)2PtCl (PtCl) and HC≡CH (HNEt2, 20 mol % CuI) yields only traces of PtC2H. However, an analogous reaction with HC≡CSiMe3 gives PtC2SiMe3 (75 %), which upon treatment with silica yields PtC2H (77 %). An analogous coupling of trans-(C6F5)(Ph3P)2PtCl with H(C≡C)2H gives trans-(C6F5)(Ph3P)2Pt(C≡C)2H (34 %). Advantages and disadvantages of the various trans-(Ar)(R3P)2Pt end-groups are analyzed.


Conference

International Symposium on Novel Aromatic Compounds (ISNA-12), International Symposium on Novel Aromatic Compounds, ISNA, Novel Aromatic Compounds, 12th, Awaji Island, Japan, 2007-07-22–2007-07-27


References

1. doi:10.1002/chem.200204741, W. Mohr, J. Stahl, F. Hampel, J. A. Gladysz. Chem.Eur. J. 9, 3324 (2003).Search in Google Scholar

2. doi:10.1002/chem.200600615, Q. Zheng, J. C. Bohling, T. B. Peters, A. C. Frisch, F. Hampel, J. A. Gladysz. Chem.Eur. J. 12, 6486 (2006).Search in Google Scholar

3. doi:10.1021/ja0716103, J. Stahl, W. Mohr, L. de Quadras, T. B. Peters, J. C. Bohling, J. M. Martin-Alvarez, G. R. Owen, F. Hampel, J. A. Gladysz. J. Am. Chem. Soc. 129, 8282 (2007).Search in Google Scholar

4. doi:10.1021/ja071612n, L. de Quadras, E. B. Bauer, W. Mohr, J. C. Bohling, T. B. Peters, J. M. Martin-Alvarez, F.Hampel, J. A. Gladysz. J. Am. Chem. Soc. 129, 8296 (2007).Search in Google Scholar

5. (a) doi:10.1039/b604465b, L. de Quadras, F. Hampel, J. A. Gladysz. Dalton Trans. 2929 (2006);Search in Google Scholar

5. (b) doi:10.1039/b708690n, L. de Quadras, E. B. Bauer, J. Stahl, F. Zhuravlev, F. Hampel, J. A. Gladysz. New. J. Chem. 31, 1594 (2007).Search in Google Scholar

6. (a) doi:10.1021/om0493558, G. R. Owen, J. Stahl, F. Hampel, J. A. Gladysz. Organometallics 23, 5889 (2004);Search in Google Scholar

6. (b) doi:10.1002/chem.200701268, G. R. Owen, J. Stahl, F. Hampel, J. A. Gladysz. Chem.Eur. J. 14, 73 (2008).Search in Google Scholar

7. doi:10.1021/om049354f, G. R. Owen, F. Hampel, J. A. Gladysz. Organometallics 23, 5893 (2004).Search in Google Scholar

8. doi:10.1021/om049353n, Q. Zheng, F. Hampel, J. A. Gladysz. Organometallics 23, 5896 (2004).Search in Google Scholar

9. Computational study: F. Zhuravlev, J. A. Gladysz. Chem.Eur. J. 10, 6510 (2004).Search in Google Scholar

10. (a) doi:10.1016/S0022-328X(99)00500-8, A. Klein, K.-W. Klinkhammer, T. Scheiring. J. Organomet. Chem. 592, 128 (1999);Search in Google Scholar

10. (b) doi:10.1021/om010984g, C. Muller, R. J. Lachicotte, W. D. Jones. Organometallics 21, 1190 (2002);Search in Google Scholar

10. (c) doi:10.1039/b207575j, W.-Y. Wong, C.-K. Wong, G.-L. Lu, K.-W. Cheah, J.-X. Shi, Z. Lin. J. Chem. Soc., Dalton Trans. 4587 (2002);Search in Google Scholar

10. (d) doi:10.1002/anie.200390360, V. W.-W. Yam, K. M.-C. Wong, N. Zhu. Angew. Chem., Int. Ed. 42, 1400 (2003);Search in Google Scholar

10. (e) doi:10.1002/ange.200390332, V. W.-W. Yam, K. M.-C. Wong, N. Zhu. Angew. Chem. 115, 1438 (2003).Search in Google Scholar

11. (a) doi:10.1021/ja992002t, M. I. Bruce, P. J. Low, K. Costuas, J.-F. Halet, S. P. Best, G. A. Heath. J. Am. Chem. Soc. 122, 1949 (2000);Search in Google Scholar

11. (b) doi:10.1016/S0022-328X(03)00709-5, F. Coat, F. Paul, C. Lapinte, L. Toupet, K.Costuas, J.-F. Halet. J. Organomet. Chem. 683, 368 (2003);Search in Google Scholar

11. (c) doi:10.1021/ja035434j, G.-L. Xu, G. Zou, Y.-H. Ni, M.C. DeRosa, R. J. Crutchley, T. Ren. J. Am. Chem. Soc. 125, 10057 (2003);Search in Google Scholar

11. (d) doi:10.1039/b615578b, K. Venkatesan, O. Blacque, H. Berke. Dalton Trans. 1091 (2007).Search in Google Scholar

12. (a) doi:10.1016/S0065-3055(03)50004-1, M. I. Bruce, P. J. Low. Adv. Organomet. Chem. 50, 179 (2004);Search in Google Scholar

12. (b) F. Paul, C. Lapinte. In Unusual Structures and Physical Properties in Organometallic Chemistry, M.Gielen, R. Willem, B. Wrackmeyer (Eds.), pp. 220-291, John Wiley, New York (2002);Search in Google Scholar

12. (c) doi:10.1021/cr030041o, S.Szafert, J. A. Gladysz. Chem. Rev. 103, 4175 (2003);Search in Google Scholar

12. (d) doi:10.1021/cr068016g, S. Szafert, J. A. Gladysz. Chem. Rev. 106, PR1 (2006).Search in Google Scholar

13. J. Stahl. Doctoral thesis, Universitat Erlangen-Nurnberg (2003).Search in Google Scholar

14. L. de Quadras. Doctoral thesis, Universitat Erlangen-Nurnberg (2006).Search in Google Scholar

15. doi:10.1021/om00017a027, K. Sunkel, U. Birk, C. Robl. Organometallics 13, 1679 (1994).Search in Google Scholar

16. R. Uson, J. Fornies, P. Espinet, G. Alfranca. Synth. React. Inorg. Met.-Org. Chem. 10, 579 (1980).Search in Google Scholar

17. (a) doi:10.1021/om030195u, E. B. Bauer, S. Szafert, F. Hampel, J. A. Gladysz. Organometallics 22, 2184 (2003);Search in Google Scholar

17. (b) doi:10.1039/b400156g, T.Shima, E. B. Bauer, F. Hampel, J. A. Gladysz. Dalton Trans. 1012 (2004);Search in Google Scholar

17. (c) doi:10.1002/adsc.200404026, E. B. Bauer, F.Hampel, J. A. Gladysz. Adv. Synth. Catal. 346, 812 (2004);Search in Google Scholar

17. (d) doi:10.1016/j.molcata.2005.12.047, N. Lewanzik, T. Oeser, J.Blumel, J. A. Gladysz. J. Mol. Catal. A 254, 20 (2006);Search in Google Scholar

17. (e) doi:10.1016/j.jorganchem.2006.12.023, L. de Quadras, J. Stahl, F. Zhuravlev, J. A. Gladysz. J. Organomet. Chem. 692, 1859 (2007).Search in Google Scholar

18. doi:10.1039/jr9650005275, D. T. Rosevear, F. G. A. Stone. J. Chem. Soc. 5275 (1965).Search in Google Scholar

19. doi:10.1039/j19660001326, F. J. Hopton, A. J. Rest, D. T. Rosevear, F. G. A. Stone. J. Chem. Soc. A 1326 (1966).Search in Google Scholar

20. doi:10.1016/S0022-328X(00)95093-9, R. Eastmond, T. R. Johnson, D. R. M. Walton. J. Organomet. Chem. 50, 87 (1973).Search in Google Scholar

21. doi:10.1021/ic50052a015, S. O. Grim, R. L. Keiter, W. McFarlane. Inorg. Chem. 6, 1133 (1967).Search in Google Scholar

22. (a) doi:10.1002/1521-3773(20000804)39:15<2632::AID-ANIE2632>3.0.CO;2-F, P. Siemsen, R. C. Livingston, F. Diederich. Angew. Chem., Int. Ed. 39, 2632 (2000);Search in Google Scholar

22. (b) doi:10.1002/1521-3757(20000804)112:15<2740::AID-ANGE2740>3.0.CO;2-F, P.Siemsen, R. C. Livingston, F. Diederich. Angew. Chem. 112, 2740 (2000).Search in Google Scholar

23. doi:10.1016/S0022-328X(01)01311-0, T. B. Peters, Q. Zheng, J. Stahl, J. C. Bohling, A. M. Arif, F. Hampel, J. A. Gladysz. J. Organomet. Chem. 641, 53 (2002).Search in Google Scholar

24. W. Mohr, T. B. Peters, J. C. Bohling, F. Hampel, A. M. Arif, J. A. Gladysz. C. R. Chemie 5, 111 (2002).10.1016/S1631-0748(02)01351-6Search in Google Scholar

25. doi:10.1039/b605509e, G. Vives, A. Carella, S. Sistach, J.-P. Launey, G. Rapenne. New J. Chem. 30, 1429 (2006).Search in Google Scholar

26. L. de Quadras, A. Hobbs, H. Kuhn, F. Hampel, K. S. Schanze. Submitted for publication.Search in Google Scholar

27. R. Uson, J. Fornies. Adv. Organomet. Chem. 28, 219 (1988).Search in Google Scholar

28. (a) doi:10.1039/b406892k, K. Reichenbacher, H. I. Suss, J. Hulliger. Chem. Soc. Rev. 34, 22 (2005);Search in Google Scholar

28. (b) doi:10.1021/jo061235h, B. W. Gung, J.C. Amicangelo. J. Org. Chem. 71, 9261 (2006).Search in Google Scholar

29. doi:10.1002/1099-0682(200104)2001:4<925::AID-EJIC925>3.0.CO;2-N, W. Mohr, G. A. Stark, H. Jiao, J. A. Gladysz. Eur. J. Inorg. Chem. 925 (2001).Search in Google Scholar

30. T. B. Patrick. In Chemistry of Organic Fluorine Compounds II, M. Hudlicky, A. E. Pavlath (Eds.), ACS Monograph 187, pp. 501-524, American Chemical Society, Washington, DC (1995).Search in Google Scholar

31. (a) doi:10.1002/anie.199511711, H. K. Cammenga, M. Epple. Angew. Chem., Int. Ed. Engl. 34, 1171 (1995);Search in Google Scholar

31. (b) doi:10.1002/ange.19951071105, H. K. Cammenga, M. Epple. Angew. Chem. 107, 1284 (1995). The Te values best represent the temperature of the phase transition or exotherm.Search in Google Scholar

32. (b) For virtual triplets [W. H. Hersh. J. Chem. Educ. 74, 1485 (1997)], the J values represent the apparent couplings between adjacent peaks. (c) The 19F{1H} NMR spectra were referenced to external C6F6 (d, -162.00 ppm), and the 195Pt{1H} spectra to external K2PtCl4 (saturated D2O solution; d, 0.00 ppm).Search in Google Scholar

33. This coupling represents a satellite (d, 195Pt = 33.8 %), and is not reflected in the peak multiplicity given.Search in Google Scholar

34. m/z (FAB, 3-NBA) for the most intense peak of the isotope envelope. For some complexes, a background peak from the matrix was the most intense; in these cases, no ion of 100% intensity is specified.Search in Google Scholar

35. H. D. Verkruijsse, L. Brandsma. Synth. Commun. 21, 657 (1991). The H(C∫C)2H concentration was calculated from the mass increase of the THF solution. CAUTION: this compound is explosive and literature precautions should be followed.Search in Google Scholar

36. Platinum coupling would be expected based upon spectra of related compounds; however, the signal/noise ratio was not sufficient.Search in Google Scholar

37. This complex was too insoluble for a 13C NMR spectrum to be recorded.Search in Google Scholar

38. doi:10.1021/jo00008a036, W.-N. Chou, M. Pomerantz. J. Org. Chem. 56, 2762 (1991).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2008-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1351/pac200880030459/html
Scroll to top button