Skip to content
Publicly Available Published by De Gruyter March 2, 2013

Endohexosaminidase-catalyzed synthesis of glycopeptides and proteins

  • Antony J. Fairbanks

The synthetic application of endohexosaminidase enzymes (e.g., Endo A, Endo M, Endo D) promises to allow ready access to a wide variety of defined homogeneous glycoproteins and glycopeptides. The use of N-glycan oligosaccharides that are activated at the reducing terminus as oxazolines allows their high-yielding attachment to almost any amino acid, peptide, or protein that contains a GlcNAc residue as an acceptor. A wide variety of oxazoline donors are readily available, either by total synthesis or by isolation of the corresponding oligosaccharide from natural sources and then conversion to the oxazoline in water. The synthetic potential of the enzymes is particularly augmented by the production of mutant glycosynthases, the use of which allows the synthesis of a wide variety of glycopeptides and glycoproteins bearing defined homogeneous N-glycan structures.


Conference

, 2012-07-22 - 2012-07-27, International Carbohydrate Symposium (ICS 2012), 26th, Madrid, Spain


D. F. Wyss, J. S. Choi, J. Li, M. H. Knoppers, K. J. Willis. Science269, 1273 (1995). (http://dx.doi.org/10.1126/science.7544493)Search in Google Scholar

J. D. Aplin, J. C. Wriston. CRC Crit. Rev. Biochem.10, 259 (1981). (http://dx.doi.org/10.3109/10409238109113601)Search in Google Scholar

T. Misaizu, S. Matsuki, T. W. Strickland, M. Takeuchi, A. Kobata, S. Takasaki. Blood86, 4097 (1995).10.1182/blood.V86.11.4097.bloodjournal86114097Search in Google Scholar

A. Varki. Glycobiology3, 97 (1993). (http://dx.doi.org/10.1093/glycob/3.2.97)Search in Google Scholar

H.-J. Gabius, S. André, J. Jiménez-Barbero, A. Romero, D. Solís. Trends Biochem. Sci.36, 298 (2011). (http://dx.doi.org/10.1016/j.tibs.2011.01.005)Search in Google Scholar

M. Rohrbach, J. T. R. Clarke. Drugs67, 2697 (2007). (http://dx.doi.org/10.2165/00003495-200767180-00005)Search in Google Scholar

T. Ueda, T. Ito, K. Tomita, H. Togame, M. Fumoto, K. Asakura, T. Oshima, S.-I. Nishimura, K. Hanasaki. Bioorg. Med. Chem. Lett.20, 4631 (2010). (http://dx.doi.org/10.1016/j.bmcl.2010.06.002)Search in Google Scholar

T. Ueda, K. Tomita, Y. Notsu, T. Ito, M. Fumoto, T. Takakura, H. Nagatome, A. Takimoto, S.-I. Mihara, H. Togame, K. Kawamoto, T. Iwasaki, K. Asakura, T. Oshima, K. Hanasaki, S.-I. Nishimura, H. Kondo. J. Am. Chem. Soc.131, 6237 (2009). (http://dx.doi.org/10.1021/ja900261g)Search in Google Scholar

J. R. Rich, S. G. Withers. Nat. Chem. Biol.5, 206 (2009). (http://dx.doi.org/10.1038/nchembio.148)Search in Google Scholar

L.-X. Wang, J. V. Lomino. Chem. Biol.7, 110 (2012).Search in Google Scholar

http://www.cazy.org/fam/GH85.html.Search in Google Scholar

A. L. Tarentino, F. Maley. J. Biol. Chem.249, 811 (1974).Search in Google Scholar

A. L. Tarentino, T. H. Plummer, F. Maley. J. Biol. Chem.249, 818 (1974).Search in Google Scholar

R. J Trumbly, P. W. Robbins, M. Belfort, F. D. Ziegler, F. Maley, R. B. Trimble. J. Biol. Chem.260, 5683 (1985).Search in Google Scholar

F. Maley, R. B. Trimble, A. L. Tarentino, T. H. Plummer. Anal. Biochem.180, 195 (1989). (http://dx.doi.org/10.1016/0003-2697(89)90115-2)Search in Google Scholar

S. Kadowaki, K. Yamamoto, M. Fujisaki, H. Kumagai, T. Tochikura. Agric. Biol. Chem.52, 2387 (1988). (http://dx.doi.org/10.1271/bbb1961.52.2387)Search in Google Scholar

S. Kadowaki, K. Yamamoto, M. Fujisaki, K. Izumi, T. Tochikura, T. Yokoyama. Agric. Biol. Chem.54, 97 (1990). (http://dx.doi.org/10.1271/bbb1961.54.97)Search in Google Scholar

K. Yamamoto, S. Kadowaki, J. Watanabe, H. Kumagai. Biochem. Biophys. Res. Commun.203, 244 (1994). (http://dx.doi.org/10.1006/bbrc.1994.2174)Search in Google Scholar

K. Haneda, T. Inazu, K. Yamamoto, H. Kumagai, Y. Nakahara, A. Kobata. Carbohydr. Res.292, 61 (1996).Search in Google Scholar

K. Yamamoto, K. Fujimori, K. Haneda, M. Mizuno, T. Inazu, H. Kumagai. Carbohydr. Res.305, 415 (1998). (http://dx.doi.org/10.1016/S0008-6215(97)10018-0)Search in Google Scholar

M. Mizuno, K. Haneda, R. Iguchi, I. Muramoto, T. Kawakami, S. Aimoto, K. Yamamoto, T. Inazu. J. Am. Chem. Soc.121, 284 (1999). (http://dx.doi.org/10.1021/ja9831305)Search in Google Scholar

K. Fujita, K. Kobayashi, A. Iwamatsu, M. Takeuchi, H. Kumagai, K. Yamamoto. Arch. Biochem. Biophys.432, 41 (2004). (http://dx.doi.org/10.1016/j.abb.2004.09.013)Search in Google Scholar PubMed

K. Takegawa, M. Nakoshi, S. Iwahara, K. Yamamoto, T. Tochikura. Appl. Environ. Microbiol.55, 3107 (1989).Search in Google Scholar

K. Takegawa, S. Yamaguchi, A. Kondo, I. Kato, S. Iwahara. Biochem. Int.25, 829 (1991).Search in Google Scholar

K. Takegawa, M. Tabuchi, S. Yamaguchi, A. Kondo, I. Kato, S. Iwahara. J. Biol. Chem.270, 3094 (1995). (http://dx.doi.org/10.1074/jbc.270.30.17723)Search in Google Scholar PubMed

J.-Q. Fan, K. Takegawa, S. Iwahara, A. Kondo, I. Kato, C. Abeyguanawardana, Y. C. Lee. J. Biol. Chem.270, 17723 (1995).Search in Google Scholar

K. Takegawa, K. Yamabe, K. Fujita, M. Tabuchi, M. Mita, H. Izu, A. Watanabe, Y. Asada, M. Sano, A. Kondo, I. Kato, S. Iwahara. Arch. Biochem. Biophys.338, 22 (1997). (http://dx.doi.org/10.1006/abbi.1996.9803)Search in Google Scholar PubMed

K. Fujita, K. Takegawa. Biochem. Biophys. Res. Commun.283, 680 (2001). (http://dx.doi.org/10.1006/bbrc.2001.4836)Search in Google Scholar PubMed

For some other leading references on synthetic applications of Endo A see.Search in Google Scholar

J.-Q. Fan, M. S. Quesenberry, K. Takegawa, S. Iwahara, A. Kondo, I. Kato, Y. C. Lee. J. Biol. Chem.27017730 (1995).Search in Google Scholar

K. Takegawa, K. Fujita, J.-Q. Fan, M. Tabuchi, N. Tanaka, A. Kondo, H. Iwamoto, I. Kato, Y. C. Lee, S. Iwahara. Anal. Biochem.257, 218 (1998). (http://dx.doi.org/10.1006/abio.1997.2543)Search in Google Scholar PubMed

K. Fujita, N. Tanaka, M. Sano, I. Kato, Y. Asada, K. Takegawa. Biochem. Biophys. Res. Commun.267, 134 (2000). (http://dx.doi.org/10.1006/bbrc.1999.1963)Search in Google Scholar

For some other leading references on synthetic applications of Endo M, see.Search in Google Scholar

K. Yamamoto, K. Fujimori, K. Haneda, M. Mizuno, T. Inazu, H. Kumagai. Carbohydr. Res.305415 (1997). (http://dx.doi.org/10.1016/S0008-6215(97)10018-0)Search in Google Scholar

K. Haneda, T. Inazu, M. Mizuno, R. Iguchi, K. Yamamoto, H. Kumagai, S. Aimoto, H. Suzuki, T. Noda. Bioorg. Med. Chem. Lett.8, 1303 (1998). (http://dx.doi.org/10.1016/S0960-894X(98)00209-1)Search in Google Scholar

T. Yamanoi, M. Tsutsumida, Y. Oda, E. Akaike, K. Osumi, K. Yamamoto, K. Fujita. Carbohydr. Res.339, 1403 (2004). (http://dx.doi.org/10.1016/j.carres.2004.01.023)Search in Google Scholar

K. Osumi, Y. Makino, E. Akaike, T. Yamanoi, M. Mizuno, M. Noguchi, T. Inazu, K. Yamamoto, K. Fujita. Carbohydr. Res.339, 2633 (2004). (http://dx.doi.org/10.1016/j.carres.2004.08.014)Search in Google Scholar

T. Yamanoi, N. Yoshida, Y. Oda, E. Akaike, M. Tsutsumida, N. Kobayashi, K. Osumi, K. Yamamoto, K. Fujita, K. Takahashi, K. Hattori. Bioorg. Med. Chem. Lett.15, 1009 (2005). (http://dx.doi.org/10.1016/j.bmcl.2004.12.040)Search in Google Scholar

K. Haneda, M. Takeuchi, M. Tagashira, T. Inazu, K. Toma, Y. Isogai, M. Hori, K. Kobayashi, M. Takeuchi, K. Takegawa, K. Yamamoto. Carbohydr. Res.341, 181 (2006). (http://dx.doi.org/10.1016/j.carres.2005.11.015)Search in Google Scholar

Y. Makimura, S. Watanabe, T. Suzuki, Y. Suzuki, H. Ishida, M. Kiso, T. Katayama, H. Kumagai, K. Yamamoto. Carbohydr. Res.341, 1803 (2006). (http://dx.doi.org/10.1016/j.carres.2006.04.024)Search in Google Scholar

D. Murakami, Y. Shimada, S. Kamiya, K. Yamazaki, Y. Makimura, K. Ito, N. Minamiura, K. Yamamoto. Arch. Biochem. Biophys.477, 299 (2008). (http://dx.doi.org/10.1016/j.abb.2008.05.021)Search in Google Scholar

M. Fujita, S.-i. Shoda, K. Haneda, T. Inazu, K. Takegawa, K. Yamamoto. Biochim. Biophys. Acta1528, 9 (2001). (http://dx.doi.org/10.1016/S0304-4165(01)00164-7)Search in Google Scholar

T. W. D. F. Rising, T. D. W. Claridge, N. Davies, D. P. Gamblin, J. W. B. Moir, A. J. Fairbanks. Carbohydr. Res.341, 1574 (2006). (http://dx.doi.org/10.1016/j.carres.2006.03.007)Search in Google Scholar PubMed

T. W. D. F. Rising, T. D. W. Claridge, J. W. B. Moir, A. J. Fairbanks. ChemBioChem7, 1177 (2006). (http://dx.doi.org/10.1002/cbic.200600183)Search in Google Scholar PubMed

T. W. D. F. Rising, C. D. Heidecke, J. W. B. Moir, Z. Ling, A. J. Fairbanks. Chem.—Eur. J.14, 6444 (2008). (http://dx.doi.org/10.1002/chem.200800365)Search in Google Scholar PubMed

C. D. Heidecke, Z. Ling, N. C. Bruce, J. W. B. Moir, T. B. Parsons, A. J. Fairbanks. ChemBioChem9, 2045 (2008). (http://dx.doi.org/10.1002/cbic.200800214)Search in Google Scholar PubMed

T. B. Parsons, J. W. B. Moir, A. J. Fairbanks. Org. Biomol. Chem.7, 3128 (2009). (http://dx.doi.org/10.1039/b907273j)Search in Google Scholar

C. D. Heidecke, T. B. Parsons, A. J. Fairbanks. Carbohydr. Res.344, 2433 (2009). (http://dx.doi.org/10.1016/j.carres.2009.09.013)Search in Google Scholar PubMed

T. B. Parsons, D. J. Vocadlo, A. B. Boraston, A. J. Fairbanks. Org. Biomol. Chem.8, 1861 (2010). (http://dx.doi.org/10.1039/b926078a)Search in Google Scholar PubMed

A. J. Fairbanks. Comptes Rendus Chimie14, 44 (2011). (http://dx.doi.org/10.1016/j.crci.2010.05.014)Search in Google Scholar

B. Li, Y. Zeng, S. Hauser, H. J. Song, L.-X. Wang. J. Am. Chem. Soc.127, 9692 (2005). (http://dx.doi.org/10.1021/ja051715a)Search in Google Scholar PubMed

H. Li, B. Li, H. Song, L. Breydo, I. V. Baskakov, L.-X. Wang. J. Org. Chem.70, 9990 (2005). (http://dx.doi.org/10.1021/jo051729z)Search in Google Scholar PubMed

L.-X. Wang, H. J. Song, S. W. Liu, H. Lu, S. B. Jiang, J. H. Ni, H. G. Li. ChemBioChem6, 1068 (2005). (http://dx.doi.org/10.1002/cbic.200400440)Search in Google Scholar PubMed

Y. Zeng, J. S. Wang, B. Li, S. Hauser, H. G. Li, L.-X. Wang. Chem.—Eur. J.12, 3355 (2006). (http://dx.doi.org/10.1002/chem.200501196)Search in Google Scholar PubMed

B. Li, H. Song, S. Hauser, L.-X. Wang. Org. Lett.8, 3081 (2006). (http://dx.doi.org/10.1021/ol061056m)Search in Google Scholar PubMed

M. Umekawa, W. Huang, B. Li, K. Fujita, H. Ashida, L.-X. Wang, K. Yamamoto. J. Biol. Chem.283, 4469 (2008). (http://dx.doi.org/10.1074/jbc.M707137200)Search in Google Scholar PubMed

L.-X. Wang. Carbohydr. Res.343, 1509 (2008). (http://dx.doi.org/10.1016/j.carres.2008.03.025)Search in Google Scholar PubMed PubMed Central

W. Huang, H. Ochiai, X. Zhang, L.-X. Wang. Carbohydr. Res.343, 2903 (2008). (http://dx.doi.org/10.1016/j.carres.2008.08.033)Search in Google Scholar PubMed PubMed Central

Y. Wei, C. Li, W. Huang, B. Li, S. Strome, L.‑X. Wang. Biochemistry47, 10294 (2008). (http://dx.doi.org/10.1021/bi800874y)Search in Google Scholar PubMed PubMed Central

H. Ochiai, W. Huang, L.-X. Wang. J. Am. Chem. Soc.130, 13790 (2008). (http://dx.doi.org/10.1021/ja805044x)Search in Google Scholar PubMed PubMed Central

H. Ochiai, W. Huang, L.-X. Wang. Carbohydr. Res.344, 592 (2009). (http://dx.doi.org/10.1016/j.carres.2009.01.016)Search in Google Scholar PubMed PubMed Central

W. Huang, C. Li, B. Li, M. Umekawa, K. Yamamoto, X. Zhang, L.-X. Wang. J. Am. Chem. Soc.131, 2214 (2009). (http://dx.doi.org/10.1021/ja8074677)Search in Google Scholar PubMed PubMed Central

W. Huang, X. Zhang, T. Ju, R. D. Cummings, L.-X. Wang. Org Biomol. Chem.8, 5224 (2010). (http://dx.doi.org/10.1039/c0ob00341g)Search in Google Scholar

M. Umekawa, C. Li, T. Higashiyama, W. Huang, H. Ashida, K. Yamamoto, L.-X. Wang. J. Biol. Chem.285, 511 (2010). (http://dx.doi.org/10.1074/jbc.M109.059832)Search in Google Scholar

G. Zou, H. Ochiai, W. Huang, Q. Yang, C. Li, L.-X. Wang. J. Am. Chem. Soc.133, 18975 (2011). (http://dx.doi.org/10.1021/ja208390n)Search in Google Scholar

M. N. Amin, W. Huang, R. M. Mizanur, L.-X. Wang. J. Am. Chem. Soc.133, 14404 (2011). (http://dx.doi.org/10.1021/ja204831z)Search in Google Scholar

W. Huang, J. Li, L.-X. Wang. ChemBiochem12, 932 (2011). (http://dx.doi.org/10.1002/cbic.201000763)Search in Google Scholar

J. J. Goodfellow, K. Baruah, K. Yamamoto, C. Bonomelli, B. Krishna, D. J. Harvey, M. Crispin, C. N. Scanlan, B. G. Davis. J. Am. Chem. Soc.134, 8030 (2012). (http://dx.doi.org/10.1021/ja301334b)Search in Google Scholar

W. Huang, J. Giddens, S.-Q. Fan, C. Toonstra, L.-X. Wang. J. Am. Chem. Soc.134, 12308 (2012). (http://dx.doi.org/10.1021/ja3051266)Search in Google Scholar

L. F. Mackenzie, Q. R. Wang, R. A. J. Warren, S. G. Withers. J. Am. Chem. Soc.120, 5583 (1998). (http://dx.doi.org/10.1021/ja980833d)Search in Google Scholar

C. Malet, A. Planas. FEBS Lett.440, 208 (1998). (http://dx.doi.org/10.1016/S0014-5793(98)01448-3)Search in Google Scholar

S.-Q. Fan, W. Huang, L.-X. Wang. J. Biol. Chem.287, 11272 (2012). (http://dx.doi.org/10.1074/jbc.M112.340497)Search in Google Scholar PubMed PubMed Central

M. D. L. Suits, Z. Ling, R. J. Bingham, N. C. Bruce, G. J Davies, A. J. Fairbanks, J. W. B. Moir, E. J. Taylor. J. Mol. Biol.389, 1 (2009); PDB accession number 2vtf, Deposition Date 14 May 2008.Search in Google Scholar

Two other family GH85 structures were reported almost simultaneously.Search in Google Scholar

WT Endo A: J. Yin, L. Li, N. Shaw, Y. Li, J. K. Song, W. Zhang, C. Xia, R. Zhang, A. Joachimiak, H.-C. Zhang, L.‑X. Wang, Z.-J. Liu, P. Wang. PLoS ONE4, e4658 (2009). (http://dx.doi.org/10.1371/journal.pone.0004658)Search in Google Scholar

Endo D: D. W. Abbott, M. S. Macauley, D. J. Vocadlo, A. B. Boraston. J. Biol. Chem.284, 11676 (2009). (http://dx.doi.org/10.1074/jbc.M809663200)Search in Google Scholar

M. Noguchi, T. Tanaka, H. Gyakushi, A. Kobayashi, S.-i. Shoda. J. Org. Chem.74, 2210 (2009). (http://dx.doi.org/10.1021/jo8024708)Search in Google Scholar

A. Seko, M. Koketsu, M. Nishizono, Y. Enoki, H. R. Ibrahim, L. R. Juneja, M. Kim, T. Yamamoto. Biochim. Biophys. Acta1335, 23 (1997). (http://dx.doi.org/10.1016/S0304-4165(96)00118-3)Search in Google Scholar

D. L. Evers, R. L. Hung, V. H. Thomas, K. G. Rice. Anal. Biochem.265, 313 (1998). (http://dx.doi.org/10.1006/abio.1998.2895)Search in Google Scholar

I. E. Liener. Arch. Biochem. Biophys.54, 223 (1955). (http://dx.doi.org/10.1016/0003-9861(55)90025-4)Search in Google Scholar

L.-X. Wang, J. Ni, S. Singh, H. Li. Chem. Biol.11, 127 (2004).Search in Google Scholar

H. Lis, N. Sharon. J. Biol. Chem.253, 3468 (1978).Search in Google Scholar

C. Unverzagt. Angew. Chem., Int. Ed. Engl.361989 (1997). (http://dx.doi.org/10.1002/anie.199719891)Search in Google Scholar

C. Unverzagt, J. Seifert. Tetrahedron Lett.41, 4549 (2000). (http://dx.doi.org/10.1016/S0040-4039(00)00698-5)Search in Google Scholar

C. Unverzagt. Chem.—Eur. J.9, 1369 (2003). (http://dx.doi.org/10.1002/chem.200390156)Search in Google Scholar PubMed

X. Schratt, C. Unverzagt. Tetrahedron Lett.46, 691 (2005). (http://dx.doi.org/10.1016/j.tetlet.2004.11.111)Search in Google Scholar

R. Schuberth, C. Unverzagt. Tetrahedron Lett.46, 4201 (2005). (http://dx.doi.org/10.1016/j.tetlet.2005.04.061)Search in Google Scholar

D. J. Cox, T. B. Parsons, A. J. Fairbanks. Synlett1315 (2010).10.1055/s-0029-1219919Search in Google Scholar

M. V. Chiesa, R. R. Schmidt. Eur. J. Org. Chem.65, 3541 (2000). (http://dx.doi.org/10.1002/1099-0690(200011)2000:21<3541::AID-EJOC3541>3.0.CO;2-K)Search in Google Scholar

G. M. Watt, G.-J. Boons. Carbohydr. Res.339, 181 (2004). (http://dx.doi.org/10.1016/j.carres.2003.10.029)Search in Google Scholar

A. Fürstner, I. Konetzki. Tetrahedron Lett.39, 5721 (1998). (http://dx.doi.org/10.1016/S0040-4039(98)01163-0)Search in Google Scholar

R. B. Trimble, P. H. Atkinson, A. L. Tarentino, T. H. Plummer, F. Maley, K. B. Tomer. J. Biol. Chem.261, 12000 (1986).Search in Google Scholar

Published Online: 2013-3-2
Published in Print: 2013-9-1

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.1351/pac-con-12-09-10/html
Scroll to top button