Skip to content
Publicly Available Published by De Gruyter March 21, 2011

Steady-state photochemistry (Pschorr cyclization) and nanosecond transient absorption spectroscopy of twisted 2-bromoaryl ketones

  • Jarugu Narasimha Moorthy , Subhas Samanta , Apurba L. Koner and Werner M. Nau

The steady-state as well as transient absorption spectroscopy of a series of 2-bromo-aryl ketones have been comprehensively examined to gain insights concerning (i) the transient phenomena (absorption spectral attributes as well as lifetimes), (ii) rates of C–Br homolysis, and (iii) the behavior of 2-aroylaryl radicals thus generated. The X-ray crystal structure analyses of selected ketones in which the mesomeric effects operate differently reveal that the two aryl rings are drastically twisted about the C=O bond. The twisting manifests itself in the spectral features of the transients, attributed to triplet–triplet (T–T) absorptions, such that they are not readily comparable in some cases to the transients of parent diaryl ketones that lack the 2-bromo group. By associating triplet decays with C–Br cleavage rates, the absolute rate data have been determined for diverse 2-bromoaryl ketones. With the exception of 2-bromo ketones containing meta-methoxy substituents, all other ketones are found to undergo efficient C–Br bond cleavage with rates of ca. 0.1–1.0 × 108 s–1. For m-methoxy-substituted ketones, intriguingly slower deactivation of the triplets was observed. Based on solvent-dependent variation of the lifetimes (longer lifetimes in polar solvents), intramolecular charge transfer has been proposed. The preparative photochemistry and transient phenomena permit invaluable inferences as to the reactivity of 2-aroylaryl radicals in general. Quantum yield determinations and product analyses reveal that highly electrophilic aryl radicals undergo radical recombination, in a poor hydrogen-donating solvent, almost exclusively (>90 %) in the absence of incentive for stabilization via conversion to π-conjugated hydrofluorenyl radicals. Of course, when the latter is feasible, Pschorr cyclization leads to productive photochemical outcome. Moderately electrophilic radicals that lack stabilization via conversion to hydrofluorenyl radicals lend themselves to intramolecular 1,5-hydrogen shifts in conjunction with the formation of dehalogenated diaryl ketones and cyclized fluorenones (Fls) or its analogs.


Conference

IUPAC Symposium on Photochemistry, International Symposium on Photochemistry, PHOTO, Photochemistry, XXIIIrd, Ferrara, Italy, 2010-07-11–2010-07-16


References

1a 10.1002/cber.18960290198, R. Pschorr. Ber. Dtsch. Chem. Ger.29, 496 (1896).Search in Google Scholar

1b 10.1002/cber.190603903126, R. Pschorr, H. Tappen, R. Hofmann, F. Quade, M. Schütz, J. Popovici. Ber. Dtsch. Chem. Ger.39, 3106 (1906).Search in Google Scholar

1c 10.1021/cr50007a002, P. H. Leake. Chem. Rev.56, 27 (1956).Search in Google Scholar

1d D. F. DeTar. Org. React.9, 410 (1957).Search in Google Scholar

1e R. A. Abramovitch. Advances in Free Radical Chemistry, Vol. 2, p. 87, Heyden and Sons, London (1967).Search in Google Scholar

1f 10.1002/jhet.5570080301, T. Kametani, K. Fukomoto. J. Heterocycl. Chem.8, 341 (1971).Search in Google Scholar

1g 10.1016/S0040-4020(01)91702-8, T. Kametani, T. Sugahara, K. Fukumoto. Tetrahedron27, 5367 (1971).Search in Google Scholar

1h 10.1021/cr60303a001, A. J. Floyd, S. F. Dyke, S. E. Ward. Chem. Rev.76, 532 (1976).Search in Google Scholar

1i P. H. Leake. Chem. Rev.76, 509 (1976).10.1021/cr60303a001Search in Google Scholar

2a 10.1021/ja01567a039, D. F. DeTar, T. E. Whiteley. J. Am. Chem. Soc.79, 2498 (1957).Search in Google Scholar

2b E. Gellert, T. R. Goivndachari, M. V. Lakshmikantham, I. S. Ragade, R. Rudzats, N. Viswanathan. J. Chem. Res. 1008 (1962).10.1039/jr9620001008Search in Google Scholar

2c 10.1071/CH9690993, B. Chauncy, E. Gellert. Aust. J. Chem.22, 993 (1969).Search in Google Scholar

2d 10.1071/CH9690427, B. Chauncy, E. Gellert, K. N. Trivedi. Aust. J. Chem.22, 427 (1969).Search in Google Scholar

2e 10.1016/S0040-4020(01)91702-8, T. Kametani, T. Sugahara, K. Fukumoto. Tetrahedron27, 5367 (1971).Search in Google Scholar

2f 10.1021/jo00942a048, S. M. Kupchan, V. Kameswaran. J. Org. Chem.38, 405 (1973).Search in Google Scholar PubMed

2g 10.1021/jo00953a024, M. P. Cava, I. Noguchi, K. T. Buck. J. Org. Chem.38, 2394 (1973).Search in Google Scholar

2h 10.1021/jo00250a019, E. P. Kyba, S.-T. Lue, K. Chockalingam, B. R. Reddy. J. Org. Chem.53, 3513 (1988).Search in Google Scholar

2i 10.1021/cr00087a004, C. Galli. Chem. Rev.88, 765 (1988).Search in Google Scholar

3a 10.1039/cs9861500261, R. Bolton, G. H. Williams. Chem. Soc. Rev.15, 261 (1986).Search in Google Scholar

3b 10.1021/ja00471a038, V. Madhavan, R. H. Schuler, R. W. Fessenden. J. Am. Chem. Soc.100, 888 (1978).Search in Google Scholar

3c P. Renaud, M. P. Sibi (Eds.). Radicals in Organic Synthesis, Vols. 1 and 2, Wiley-VCH, Weinheim (2001).10.1002/9783527618293Search in Google Scholar

3d 10.1039/a807292b, P. Hanson, P. W. Lövenich, S. C. Rowell, P. H. Walton, A. W. Timms. J. Chem. Soc., Perkin Trans. 2 49 (1999).Search in Google Scholar

4 10.1021/ja030231g, For a recent laser flash photolysis investigation of aroylperbenzoates leading to aroylphenyl radicals, see: B. K. Shah, D. C. Neckers. J. Am. Chem. Soc.126, 1830 (2004).Search in Google Scholar

5a 10.1021/j100878a513, E. J. Baum, J. N. Pitts. J. Phys. Chem.70, 2066 (1966).Search in Google Scholar

5b 10.1021/ja00964a005, E. J. Baum, J. K. S. Wan, J. N. Pitts. J. Am. Chem. Soc.88, 2652 (1966).Search in Google Scholar

6a 10.1021/ja00101a052, P. J. Wagner, J. Sedon, C. Waite, A. Gudmundsdottir. J. Am. Chem. Soc.116, 10284 (1994).Search in Google Scholar

6b 10.1021/j100019a023, P. J. Wagner, C. I. Waite. J. Phys. Chem.99, 7388 (1995).Search in Google Scholar

6c 10.1021/ja952782f, P. J. Wagner, J. H. Sedon, A. Gudmundsdottir. J. Am. Chem. Soc.118, 746 (1996).Search in Google Scholar

7a 10.1016/S0040-4039(99)01292-7, J. M. Cummins, U.-H. Dolling, A. W. Douglas, S. Karady, W. R. Leonard, B. F. Marcune. Tetrahedron Lett.40, 6153 (1999).Search in Google Scholar

7b 10.1021/ja00124a052, S. Karady, N. L. Abramson, U.-H. Dolling, A. W. Douglas, G. J. McManemin, B. Marcune. J. Am. Chem. Soc.117, 5425 (1995).Search in Google Scholar

7c 10.1021/ol027301t, S. Karady, J. M. Cummins, J. J. Dannenberg, E. Rio, P. G. Dormer, B. F. Marcune, R. A. Reamer, T. L. Sordo. Org. Lett.5, 1175 (2003).Search in Google Scholar PubMed

8 10.1021/jo7017872, J. N. Moorthy, S. Samanta. J. Org. Chem.72, 9786 (2007).Search in Google Scholar PubMed

9a P. J. Wagner, B.-S. Park. In Organic Photochemistry, Vol. 11, A. Pawda (Ed.), Chap. 4, Marcel Dekker, New York (1991).Search in Google Scholar

9b M. B. Rubin. In CRC Handbook of Organic Photochemistry and Photobiology, W. R. Horspool (Ed.), Chap. 36, CRC Press, Boca Raton (1995).Search in Google Scholar

10 10.1063/1.2389009, A. A. Avdeenko, O. S. Pyshkin, V. V. Eremenko, M. A. Strzhemechny, L. M. Buravtseva, R. V. Romashkin. Low Temp. Phys.32, 1028 (2006).Search in Google Scholar

11a 10.1039/p29940000691, P. Hanson, R. C. Hammond, P. R. Goodacre, J. Purcell, A. W. Timms. J. Chem. Soc., Perkin Trans. 2 691 (1994).Search in Google Scholar

11b 10.1039/b006184k, S. A. Chandler, P. Hanson, A. B. Taylor, P. H. Walton, A. W. Timms. J. Chem. Soc., Perkin Trans. 2 214 (2001).Search in Google Scholar

12 W. G. McGimpsey, J. C. Scaiano. Can. J. Chem.66, 1474 (1988).Search in Google Scholar

13a 10.1021/j100857a027, M. C. Sauer Jr., I. Mani. J. Phys. Chem.72, 3856 (1968).Search in Google Scholar

13b 10.1002/chem.19950010706, X. Fang, X. Pan, A. Rahmann, H.-P. Schuchmann, C. V. Sonntag. Chem.—Eur. J.1, 423 (1995).Search in Google Scholar

14a 10.1021/ja00776a035, P. J. Wagner, A. E. Kemppainen. J. Am. Chem. Soc.94, 7495 (1972).Search in Google Scholar

14b 10.1021/ja00776a034, P. J. Wagner, I. E. Kochevar, A. E. Kemppainen. J. Am. Chem. Soc.94, 7489 (1972).Search in Google Scholar

15 For crystal structure of ketones 1a and BP, see ref. code: PAMWOQ (CSD search) and BPHENO11, respectively.Search in Google Scholar

16 J. R. Scheffer, P. R. Pokkuluri. In Photochemistry in Organized and Constrained Media, V. Ramamurthy (Ed.), Chap. 5, VCH, New York (1991).Search in Google Scholar

17a 10.1021/ja01023a047, J. N. Pitts Jr., D. R. Burley, J. C. Mani, A. D. Broadbent. J. Am. Chem. Soc.90, 5902 (1968).Search in Google Scholar

17b 10.1021/ja01023a044, P. J. Wagner, A. E. Kemppainen. J. Am. Chem. Soc.90, 5898 (1968).Search in Google Scholar

17c 10.1021/ja00798a027, P. J. Wagner, A. E. Kemppainen, H. N. Schott. J. Am. Chem. Soc.95, 5604 (1973).Search in Google Scholar

18 The triplet-excited states of acetophenones are typically 3–5 kcal/mol higher than those of benzo-phenones, cf. ref. [9]. Yet, the acetophenone-like character does not entirely offset the endo-thermicity associated with C–Br cleavage.Search in Google Scholar

19 The absorption spectral features of transient intermediates such as ketyl radicals are likewise significantly influenced by substituents, see.Search in Google Scholar

19a 10.1021/jp047058a, M. Sakamoto, X. Cai, M. Hara, S. Tojo, M. Fujitsuka, T. Majima. J. Phys. Chem. A108, 8147 (2004).Search in Google Scholar

19b 10.1002/chem.200500409, M. Sakamoto, X. Cai, M. Fujitsuka, T. Majima. Chem.—Eur. J.12, 1610 (2006).Search in Google Scholar PubMed

20 10.1562/2005-06-20-RA-581, E. C. Lathioor, W. J. Leigh. Photochem. Photobiol.82, 291 (2006).Search in Google Scholar PubMed

21a 10.1039/tf9656101664, G. Porter, P. Suppan. Trans. Faraday Soc.61, 1664 (1965).Search in Google Scholar

21b P. J. Wagner, E. J. Siebert. J. Am. Chem. Soc.103, 7337 (1981).Search in Google Scholar

21c 10.1021/ja9706460, W. Adam, J. N. Moorthy, W. Nau, J. C. Scaiano. J. Am. Chem. Soc.119, 6749 (1997).Search in Google Scholar

22 The aroylaryl radicals are known to exhibit absorption characteristics similar to those of the triplets and ketyl radicals, cf. ref. [4]. The decay of the triplet absorption with concomitant rise of the radical absorption should be possible to be recognized from transient decay kinetics.Search in Google Scholar

23 10.1021/ja00471a038, V. Madhavan, R. H. Schuler, R. W. Fessenden. J. Am. Chem. Soc.100, 888 (1978).Search in Google Scholar

24 10.1021/cr50013a004, D. R. Augood, G. Williams. Chem. Rev.57, 123 (1957).Search in Google Scholar

Online erschienen: 2011-3-21
Erschienen im Druck: 2011-3-21

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1351/PAC-CON-10-10-26/html
Scroll to top button