Skip to content
Publicly Available Published by De Gruyter February 14, 2010

Allium chemistry: Use of new instrumental techniques to “see” reactive organosulfur species formed upon crushing garlic and onion

  • Eric Block , Robert B. Cody , A. John Dane , Robert Sheridan , Abith Vattekkatte and Kai Wang

Three different instrumental methods have been used to examine the organosulfur chemistry of intact and cut garlic and onions: X-ray fluorescence spectroscopic imaging (XFS), direct analysis in real time (DART) mass spec-trometry, and ultra-performance liquid chromatography-(Ag+)-coordination ion spray mass spectrometry (UPLC–(Ag+)CIS–MS). The first technique has been used to map the location of different chemical forms of sulfur in intact and damaged onion cells, the second technique, to identify the reactive, volatile sulfur compounds formed on cutting the plants, and the third technique, to identify members of families of polysulfides found in the distilled oil of garlic.


Conference

International Conference on Heteroatom Chemistry (ICHAC-9), International Conference on Heteroatom Chemistry, ICHAC, Heteroatom Chemistry, 9th, Oviedo, Spain, 2009-06-30–2009-07-04


References

1a E. Block. Garlic and Other Alliums: The Lore and the Science, Royal Society of Chemistry, Cambridge (2010).Search in Google Scholar

1b 10.1351/pac199668040937, E. Block, X.-J. Cai, P. C. Uden, X. Zhang, B. D. Quimby, J. J. Sullivan. Pure Appl. Chem.68, 937 (1996).Search in Google Scholar

1c 10.1351/pac199365040625, E. Block, S. Naganathan, D. Putman, S.-H. Zhao. Pure Appl. Chem.65, 625 (1993).Search in Google Scholar

1d 10.1002/anie.199211351, E. Block. Angew. Chem., Int. Ed. Engl.31, 1135 (1992).Search in Google Scholar

2 10.1021/bi900368x, I. J. Pickering, E. Y. Sneeden, R. C. Prince, E. Block, H. H. Harris, G. Hirsch, G. N. George. Biochemistry48, 6846 (2009).Search in Google Scholar PubMed

3 10.1021/ja039239g, E. Y. Sneeden, H. H. Harris, I. J. Pickering, R. C. Prince, S. Johnson, X. Li, E. Block, G. N. George. J. Am. Chem. Soc.126, 458 (2004).Search in Google Scholar PubMed

4 10.1021/ac060380s, E. Bulska, I. A. Wysocka, M. H. Wierzbicka, K. Proost, K. Janssens, G. Falkenberg. Anal. Chem.78, 7616 (2006).Search in Google Scholar PubMed

5a 10.1021/ac050162j, R. B. Cody, J. A. Laramee, H. D. Durst. Anal. Chem.77, 2297 (2005).Search in Google Scholar PubMed

5b K. Cottingham. Anal. Chem.77, 161A (2005).10.1021/ac053379mSearch in Google Scholar

5c 10.1021/ac8022108, R. B. Cody. Anal. Chem.81, 1101 (2009).Search in Google Scholar PubMed

6 10.1016/j.jasms.2008.09.016, L. Song, A. B. Dykstra, H. Yao, J. E. Bartness. J. Am. Soc. Mass Spectrom.20, 42 (2009).Search in Google Scholar PubMed

7 10.1002/rcm.4133, S. D. Maleknia, T. M. Vail, R. B. Cody, D. O. Sparkman, T. L. Bell, M. A. Adams. Rapid Commun. Mass Spectrom.23, 2241 (2009).Search in Google Scholar

8 10.1002/pca.1136, H. J. Kim, Y. P. Jang. Phytochem. Anal.20, 372 (2009).Search in Google Scholar

9 10.1002/bmc.998, S. Banerjee, K. P. Madhusudanan, S. K. Chattopadhyay, L. U. Rahman, S. P. S. Khanuja. Biomed. Chromatogr.22, 830 (2008).Search in Google Scholar

10 E. Block, A. J. Dane, A. Vattekkatte, R. B. Cody. Submitted for publication.Search in Google Scholar

11 10.1021/jf903733e, R. Kubec, R. B. Cody, A. J. Dane, R. A. Musah, J. Schraml, A. Vattekkatte, E. Block. J. Agric. Food Chem.58, 1121 (2010).Search in Google Scholar

12a 10.1002/(SICI)1521-3773(19990401)38:7<992::AID-ANIE992>3.0.CO;2-K, E. Bayer, P. Gfrorer, C. Rentel. Angew. Chem., Int. Ed.38, 992 (1999).Search in Google Scholar

12b 10.1021/ja001180f, C. M. Havrilla, D. L. Hachey, N. A. Porter. J. Am. Chem. Soc.122, 8042 (2000).Search in Google Scholar

12c 10.1016/S1044-0305(03)00339-8, J. R. Seal, C. M. Havrilla, N. A. Porter, D. L. Hachey. J. Am. Soc. Mass Spectrom.14, 872 (2003).Search in Google Scholar

12d 10.1016/S0076-6879(07)33011-5, H. Yin, N. A. Porter. Methods Enzymol.433, 193 (2007).Search in Google Scholar

12e 10.1021/ac048818g, J. Zhang, J. S. Brodbelt. Anal. Chem.77, 1761 (2005).Search in Google Scholar

12f 10.1002/rcm.3801, L. Cheng, M. Zhang, P. Zhang, Z. Song, Z. Ma, H. Qu. Rapid Commun. Mass Spectrom.22, 3783 (2008).Search in Google Scholar

13a 10.1021/ac035017p, H. Hayen, M. M. Alvarez-Grima, S. C. Debnath, J. W. M. Noordermeer, U. Karst. Anal. Chem.76, 1063 (2004).Search in Google Scholar PubMed

13b L. Li, H. Yang, X. Chen, L. Xu. Fenxi Huaxue34, 1183 (2006); Chem. Abstr.146, 1216171 (2006).Search in Google Scholar

13c 10.1002/anie.200602942, H. Chen, A. Wortmann, W. Zhang, R. Zenobi. Angew. Chem., Int. Ed.46, 580 (2007).Search in Google Scholar PubMed

14a M. Swartz. Sep. Sci. Technol.8, 145 (2007).Search in Google Scholar

14b 10.1016/j.talanta.2005.06.035, L. Novakova, L. Matysova, P. Solich. Talanta68, 908 (2006).Search in Google Scholar PubMed

14c 10.1016/j.jchromb.2005.05.037, M. I. Churchwell, N. C. Twaddle, L. R. Meeker, D. R. Doerge. J. Chromatogr., B825, 134 (2005).Search in Google Scholar PubMed

15 E. Block, R. Sheridan, K. Wang, S.-Z. Zhang. Manuscript in preparation.Search in Google Scholar

Online erschienen: 2010-2-14
Erschienen im Druck: 2010-2-14

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1351/PAC-CON-09-08-12/html
Scroll to top button