Skip to content
Publicly Available Published by De Gruyter May 22, 2012

Green polymer chemistry: Living oxidative polymerization of dithiols

  • Emily Q. Rosenthal-Kim and Judit E. Puskas

Reduction sensitivity and mild synthetic conditions make disulfide-bonded materials ideal for degradable biomaterial applications. Both the degradation and the synthetic advantages of disulfide-bonded biomaterials have been applied to drug delivery vesicles, protein conjugation, and hydrogel biomaterials, but the synthetic advantages are rarely seen in the creation of biopolymers. A greener and highly efficient oxidative system is presented for the polymerization dithiols to high-molecular-weight poly(disulfide) polymers. The application of this system to 2-[2-(2-sulfanylethoxy)ethoxy]ethanethiol (DODT) produced corresponding degradable poly(disulfide) polymers with molecular weights as high as Mn = 250 000 g/mol and with a polydispersity index (PDI) as low as 1.15.


Conference

International Symposium on Ionic Polymerization (IP 2011), Akron, USA, 2011-07-10–2011-07-15


References

1 10.1016/j.biomaterials.2009.01.026, F. Meng, W. Hennick, Z. Zhong. Biomaterials30, 2180 (2009).Search in Google Scholar

2 10.1016/S0169-409X(02)00179-5, G. Saito, J. A. Swanson, K.-D. Lee. Adv. Drug Delivery Rev.55, 199 (2003).Search in Google Scholar

3 P. E. Thorpe, P. M. Wallace, P. P. Knowles, M. G. Relf, A. N. Brown, G. J. Watson, R. E. Knyba, E. J. Wawrzynczak, D. C. Blakey. Cancer Res.47, 5924 (1987).Search in Google Scholar

4 C. Jacob, I. Knight, P. G. Winyard. J. Biol. Chem.75, 1385 (2006).Search in Google Scholar

5 10.1021/ja01495a028, J. P. Danehy, C. J. Noel. J. Am. Chem. Soc.82, 2511 (1960).Search in Google Scholar

6 10.1021/ja01489a008, P. Ballinger, F. A. Long. J. Am. Chem. Soc.82, 795 (1960).Search in Google Scholar

7 L. S. Harman, C. Mottley, R. Mason. J. Biol. Chem.259, 5606 (1984).Search in Google Scholar

8 A. Holmgren. In Methods in Enzymology, 107, K. M. Finn Wold (Ed.), pp. 295–350, Academic Press, New York (1984).10.1016/0076-6879(84)07019-1Search in Google Scholar

9 S. Oae. Organic Sulfur Chemsitry: Structure and Mechanism, CRC Press, Ann Arbor, MI (1991).Search in Google Scholar

10 R. L. Augustine (Ed.). Oxidation: Techniques and Applications in Organic Synthesis, 1, pp. 247–248, Marcel Dekker, New York (1969).Search in Google Scholar

11 L. O. Randall. J. Biol. Chem.164, 521 (1946).10.1016/S0021-9258(17)41255-5Search in Google Scholar

12 K. Faber. Biotransformations in Organic Chemistry, 5th ed., pp. 226, 378–381 Springer-Verlag, New York (2004).10.1007/978-3-642-18537-3Search in Google Scholar

13 Y. Yano, M. Oshima, S. Suto, M. Nakazato. Chem. Commun.5, 1031 (1984).Search in Google Scholar

14 10.1039/p29850000753, Y. Yano, M. Oshima, I. Yatsu, S. Sutoh. J. Chem. Soc., Perkins Trans. 26, 753 (1985).Search in Google Scholar

15 10.1071/CH9771387, J. W. Holden, L. Main. Aust. J. Chem.30, 1387 (1977).Search in Google Scholar

16 10.1021/jo00422a034, G. M. Whitesides, J. E. Lilburn, R. P. Szajewski. J. Org. Chem.42, 332 (1977).Search in Google Scholar

17 10.1016/j.jconrel.2007.05.014, X.-L. Wang, R. Jensen, Z.-R. Lu. J. Controlled Release120, 250 (2007).Search in Google Scholar

18 10.1016/j.polymer.2005.04.013, Y.-M. Chen, B.-H. Huang, J.-J. Lin. Polymer46, 4619 (2005).Search in Google Scholar

19 10.1021/bm800985e, S. Matsumoto, R. J. Christie, N. Nishiyama, K. Miyata, A. Ishii, M. Oba, H. Koyama, Y. Yamasaki, K. Kataoka. Biomacromolecules10, 119 (2009).Search in Google Scholar

20 10.1016/j.addr.2007.06.014, S. Brocchini, A. Godwin, S. Balan, J. Choi, M. Zloh, S. Shaunak. Adv. Drug Delivery Rev.60, 3 (2008).Search in Google Scholar

21 10.1016/j.biomaterials.2009.02.004, W. Shen, R. Lammertink, J. K. Sakata, J. A. Kornfield, D. A. Tirell. Biomaterials30, 2180 (2009).Search in Google Scholar

22 10.1021/ja0040417, R. P. Lyon, W. M. Atkin. J. Am. Chem. Soc.123, 4408 (2001).Search in Google Scholar

23 10.1016/S1382-6689(01)00078-3, G. E. Arteel, H. Sies. Environ. Toxicol. Pharmacol.10, 153 (2001).Search in Google Scholar

24 10.1016/j.ccr.2009.02.026, A. Bindoli, M. P. Rigobello, G. Scutari, C. Cabbiani, A. Casini, L. Messori. Coord. Chem. Rev.253 1692 (2009).Search in Google Scholar

25 A. Holmgren, M. Bjornstedt. In Methods in Enzymology, 252, L. Packer (Ed.), pp. 199–208, Academic Press, New York (1995).10.1016/0076-6879(95)52023-6Search in Google Scholar

26 S. N. Savvides, P. A. Karplus. J. Biol. Chem.271, 8101 (1996).Search in Google Scholar

27 E. S. Pilka, C. Johannson, K. Guo, O. Gileadi, A. Rojkowa, F. von Delft, A. C. W. Pike, K. L. Kavanagh, M. Sundstrom, W. H. Lee, S. Muller, B. D. Marsden, C. Bountra, U. Oppermann. GPX3: Human glutathione peroxidase 3, PDB Code: 2R37 (2007).Search in Google Scholar

28 B. A. Shirley (Ed.). Protein Stability and Folding: Theory and Practice, Humana Press, New York (1995).Search in Google Scholar

29 10.1146/annurev.cellbio.24.110707.175333, B. S. Mamathambika, J. C. Bardwell. Annu. Rev. Cell Dev. Biol.24, 211 (2008).Search in Google Scholar PubMed

30 10.1006/taap.1996.0191, C. V. Smith, D. P. Jones, T. M. Guenther, L. H. Lash, B. H. Lauterburg. Toxicol. Appl. Pharmacol.140, 1 (1996).Search in Google Scholar

31 10.1002/macp.200700315, A. Braunová, M. Pechar, R. Laga, K. Ulbrich. Macromol. Chem. Phys.208, 2642 (2007).Search in Google Scholar

32 10.1016/S0891-5849(01)00480-4, F. Q. Schafer, G. R. Buettner. Free Radical Biol. Med.30, 1191 (2001).Search in Google Scholar

33 10.1002/elps.200305768, C. Carru, L. Deiana, S. Sotgia, G. M. Pes, A. Zinellu. Electrophoresis25, 882 (2004).Search in Google Scholar

34 10.1002/elps.200400042, A. Zinellu, S. Sotgia, M. F. Usai, R. Chessa, L. Deiana, C. Carru. Electrophoresis26, 1963 (2005).Search in Google Scholar

35 10.1016/0014-5793(92)80274-K, Y. Moriyama, M. Maeda, M. Futai. FEBS Lett.302, 18 (1992).Search in Google Scholar

36 A. M. Cantin, S. L. North, R. C. Hubbard, R. G. Crystal. J. Appl. Physiol.63, 152 (1987).Search in Google Scholar

37 10.1021/bc00024a015, D. Willner, P. A. Trail, S. J. Hofstead, H. D. King, S. J. Lasch, G. R. Braslawsky, R. S. Greenfield, T. Kaneko, R. A. Firestone. Bioconjugate Chem.4, 521 (1993).Search in Google Scholar PubMed

38 10.1021/jo00296a082, P. D. Senter, W. E. Pearce, R. S. Greenfield. J. Org. Chem.55, 2975 (1990).Search in Google Scholar

39 10.1039/b815918a, A. N. Koo, H. J. Lee, S. E. Kim, J. H. Chang, C. Park, C. Kim, J. H. Park, S. C. Lee. Chem. Commun.48, 6570 (2008).Search in Google Scholar PubMed

40 10.1021/bm070085x, S. Cerritelli, D. Velluto, J. A. Hubbell. Biomacromolecules8, 1966 (2007).Search in Google Scholar PubMed

41 10.1016/0169-409X(94)90016-7, T. M. Allen. Adv. Drug Delivery Rev.13, 285 (1994).Search in Google Scholar

42 10.1002/adma.200802453, S. Bauhuber, C. Hozsa, M. Breunig, A. Gopferich. Adv. Mater.21, 3286 (2009).Search in Google Scholar

43 10.1016/j.biomaterials.2006.02.037, Y. Ji, K. Ghosh, X. Z. Shu, B. Li, J. C. Sokolov. G. D. Prestwich, A. F. Richard, M. H. Rafailovich. Biomaterials27, 3782 (2006).Search in Google Scholar

44 X. Z. Shu, Y. Liu, M. C. Roberts, G. D. Prestwich. Biomaterials3, 1304 (2002).10.1021/bm025603cSearch in Google Scholar

45 10.1016/S0142-9612(03)00267-9, X. Z. Shu, Y. Liu, F. Palumbo, G. D. Prestwich. Biomaterials24, 3825 (2003).Search in Google Scholar

46 10.1016/j.ejps.2009.01.010, Z. M. Wu, X. G. Zhang, C. Zheng, C. X. Li, S. M. Zhang, R. N. Dong, D. M. Yu. Eur. J. Pharm. Sci.37 198 (2009).Search in Google Scholar

47 10.1016/j.biomaterials.2008.08.008, J. Zhang, A. Skardal, G. D. Prestwich. Biomaterials29, 4521 (2008).Search in Google Scholar

48 10.1002/(SICI)1097-4636(199804)40:1<115::AID-JBM13>3.0.CO;2-N, N. Hisano, M. Noriyuki, H. Iwata, Y. Ikada. Biomed. Mater. Res.40, 115 (1998).Search in Google Scholar

49 R. Munday. In Methods in Enzymology, 251, L. Packer (Ed.), pp. 117–120, Academic Press, New York (1995).10.1016/0076-6879(95)51115-6Search in Google Scholar

50 10.1016/0891-5849(89)90147-0, R. Munday. Free Radical Biol. Med.7, 659 (1989).Search in Google Scholar

51 E. Cadenas. In Methods in Enzymology, 251, L. Packer (Ed.), pp. 106–116, Academic Press, New York (1995).10.1016/0076-6879(95)51114-8Search in Google Scholar

52 J. C. Patrick. U.S. Patent 1890 191, Issued 6 Dec 1932.Search in Google Scholar

53 J. C. Patrick. U.S. Patent 2553 206, Issued 15 May 1951.Search in Google Scholar

54 J. C. Patrick, N. M. Mnookin, J. C. Patrick. U.S. Patent 1996 486, Issued 2 April 1935.Search in Google Scholar

55 E. M. Fettes, J. S. Jorczak. Ind. Eng. Chem. Res.42, 2217 (1950).Search in Google Scholar

56 K. Kishore, K. Ganesh. Adv. Polym. Sci.121, 83 (1995).Search in Google Scholar

57 J. C. Patrick. U.S. Patent 2363 614, Issued 28 Nov 1944.Search in Google Scholar

58 10.1021/ja01569a027, C. S. Marvel, L. E. Olson. J. Am. Chem. Soc.79, 3089 (1957).Search in Google Scholar

59 10.1021/jo01072a024, P. V. Bonsignore, C. S. Marvel, S. Banerjee. J. Org. Chem.25, 237 (1960).Search in Google Scholar

60 E. J. Goethals, C. Sillis. Macromol. Chem. Phys.119, 249 (1968).Search in Google Scholar

61 10.1007/s00253-005-0156-x, Z. J. Witczak, J. M. Culhane. Appl. Microbiol. Biotechnol.69, 237 (2005).Search in Google Scholar

62 10.1002/pol.1967.150050827, R. L. Whistler, D. J. Hoffman. J. Polym. Sci., Part A: Polym. Chem.5, 2111 (1967).Search in Google Scholar

63 10.1002/(SICI)1099-0518(19980115)36:1<79::AID-POLA11>3.0.CO;2-A, W. Choi, F. Sanda, N. Kihara, T. Endo. J. Polym. Sci., Part A: Polym. Chem.36, 79 (1998).Search in Google Scholar

64 10.1002/pat.497, Y. Z. Meng, A. R. Hllil, A. S. Hay. Polym. Adv. Technol.15, 564 (2004).Search in Google Scholar

65 10.1002/(SICI)1097-4628(19991220)74:13<3069::AID-APP9>3.0.CO;2-I, Y. Z. Meng, A. S. Hay. J. Appl. Polym. Sci.74, 3069 (1999).Search in Google Scholar

66 10.1016/S0032-3861(01)00007-6, Y. Z. Meng, S. C. Tjong, A. S. Hay. Polymer42, 5215 (2001).Search in Google Scholar

67 H. Koo, G. Jin, Y. Lee, H. Mo, M. Cho, J.-S. Park. Bull. Korean Chem. Soc.26, 2069 (2005).Search in Google Scholar

68 10.1021/bm049658l, Y. Lee, H. Koo, G. Jin, H. Mo, M. Cho, J.-Y. Park, J. Choi, J.-S. Park. Biomacromolecules6, 24 (2005).Search in Google Scholar

69 10.1016/j.ijpharm.2009.03.010, H. Koo, G. Jin, H. Kang, Y. Lee, H. Y. Nam, H.-S. Jang, J.-S. Park. Int. J. Pharm.374, 58 (2009).Search in Google Scholar PubMed

70 10.1021/ma061070e, M. Whittaker, Y.-K. Goh, H. Gemici, T. Legge, S. Perrier, M. Montiero. Macromolecules39, 9028 (2006).Search in Google Scholar

71 10.1021/bm0702049, Y. Z. You, D. S. Manickam, Q.-H. Zhou, D. Oupicky. Biomacromolecules8, 2038 (2007).Search in Google Scholar PubMed

72 10.1021/ma021061f, N. V. Tsarevsky, K. Matyjaszewski. Macromolecules35, 9009 (2002).Search in Google Scholar

73 J. E. Puskas, E. Q. Rosenthal. U.S. Patent Application 20110218298, Filed 4 March 2011.Search in Google Scholar

74 10.1021/bm201395t, E. Q. Rosenthal, J. E. Puskas, C. Wesdemiotis. Biomacromolecules13, 154 (2011).Search in Google Scholar PubMed

Online erschienen: 2012-5-22
Erschienen im Druck: 2012-5-22

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1351/PAC-CON-11-11-04/html
Scroll to top button