Skip to content
Publicly Available Published by De Gruyter May 4, 2011

A Gibbs energy minimization method for constrained and partial equilibria

  • Pertti Koukkari and Risto Pajarre

The conventional Gibbs energy minimization methods apply elemental amounts of system components as conservation constraints in the form of a stoichiometric conservation matrix. The linear constraints designate the limitations set on the components described by the system constituents. The equilibrium chemical potentials of the constituents are obtained as a linear combination of the component-specific contributions, which are solved with the Lagrange method of undetermined multipliers. When the Gibbs energy of a multiphase system is also affected by conditions due to immaterial properties, the constraints must be adjusted by the respective entities. The constrained free energy (CFE) minimization method includes such conditions and incorporates every immaterial constraint accompanied with its conjugate potential. The respective work or affinity-related condition is introduced to the Gibbs energy calculation as an additional Lagrange multiplier. Thus, the minimization procedure can include systemic or external potential variables with their conjugate coefficients as well as non-equilibrium affinities. Their implementation extends the scope of Gibbs energy calculations to a number of new fields, including surface and interface systems, multi-phase fiber suspensions with Donnan partitioning, kinetically controlled partial equilibria, and pathway analysis of reaction networks.

References

1 W. R. Smith, R. W. Missen. Chemical Reaction Equilibrium Analysis: Theory and Algorithms, Krieger, Malabar, FL (1991).Search in Google Scholar

2 S. Gordon, B. J. McBride. Computer Program for Calculation of Complex Equilibrium Compositions and Applications, NASA Reference Publication 1311 (1994).Search in Google Scholar

3 10.3891/acta.chem.scand.25-2651, G. Eriksson. Acta Chem. Scand.25, 2651 (1971).Search in Google Scholar

4 10.1007/BF02868269, M. Hillert. Bull. Alloy Phase Diagrams2, 265 (1981).Search in Google Scholar

5 L. Kaufman, H. Bernstein. Computer Calculation of Phase Diagrams, Academic Press, New York (1970).Search in Google Scholar

6 K. Hack (Ed.). The SGTE Casebook: Thermodynamics at Work, 2nd ed., p. 14, Woodhead, Cambridge (2008).Search in Google Scholar

7 S. M. Walas. Phase Equilibria in Chemical Engineering, Butterworth, Stoneham, MA (1985).Search in Google Scholar

8 10.1016/j.fluid.2003.08.005, A. L. Ballard, E. D. Sloan. Fluid Phase Equilib.218, 15 (2004).Search in Google Scholar

9 10.1016/S0098-1354(02)00144-8, D. V. Nichita, S. Gomez, E. Luna. Comput. Chem. Eng.26, 1703 (2002).Search in Google Scholar

10 10.1023/A:1021768011887, E. Königsberger, G. Eriksson. J. Solution Chem.28, 721 (1998).Search in Google Scholar

11 10.1351/pac200274101831, E. Königsberger. Pure Appl. Chem.74, 1831 (2002).Search in Google Scholar

12 10.3183/NPPRJ-2001-16-01-p024-032, J. Lindgren, L. Wiklund, L.-O. Öhman. Nordic Pulp Paper Res. J.16, 24 (2001).Search in Google Scholar

13 10.1023/A:1020201909118, P. Koukkari, R. Pajarre, H. Pakarinen. J. Solution Chem.31, 627 (2002).Search in Google Scholar

14 10.1016/j.jcis.2008.09.027, P. Sundman, P. Persson, L.-O. Öhman. J. Colloid Interface Sci.328, 248 (2008).Search in Google Scholar PubMed

15 10.1149/1.2069243, M. Lampinen, J. Vuorisalo. J. Electrochem. Soc.139, 484 (1992).Search in Google Scholar

16 10.1021/j100345a081, R. A. Alberty. J. Phys. Chem.93, 3299 (1989).Search in Google Scholar

17 10.1016/S0010-2180(71)80166-9, J. C. Keck, D. Gillespie. Combust. Flame17, 237 (1971).Search in Google Scholar

18 10.1016/0360-1285(90)90046-6, J. C. Keck. Prog. Energy Combust. Sci.16, 125 (1990).Search in Google Scholar

19 10.1016/0098-1354(93)80096-6, P. Koukkari. Comput. Chem. Eng.17, 1157 (1993).Search in Google Scholar

20 10.1016/j.calphad.2005.11.007, P. Koukkari, R. Pajarre. CALPHAD30, 18 (2006).Search in Google Scholar

21 10.1016/S1570-7946(08)80153-8, R. Pajarre, P. Blomberg, P. Koukkari. Comput.-Aided Chem. Eng.25, 883 (2008).Search in Google Scholar

22 10.1016/j.mbs.2009.04.004, P. B. A. Blomberg, P. Koukkari. Math. Biosci.220, 81 (2009).Search in Google Scholar PubMed

23 10.1351/pac200173081349, R. Alberty. Pure Appl. Chem.73, 1349 (2001).Search in Google Scholar

24 E. A. Guggenheim. Thermodynamics, p. 335, North-Holland, Amsterdam (1977).Search in Google Scholar

25 P. Koukkari, R. Pajarre, K. Hack. Int. J. Mater. Res.98, 926 (2007).Search in Google Scholar

26 10.1016/j.calphad.2005.08.003, R. Pajarre, P. Koukkari, T. Tanaka, Y. Lee. CALPHAD30, 196 (2006).Search in Google Scholar

27 E. T. Turkdogan. Physical Chemistry of High-Temperature Technology, p. 96, Academic Press, London (1980).Search in Google Scholar

28 J. A. V. Butler. Proc. R. Soc., London, A135, 348 (1932).10.1098/rspa.1932.0040Search in Google Scholar

29 J. C. Joud, N. Eustathopoulos, P. Desse. J. Chim. Phys.70, 1290 (1973).Search in Google Scholar

30 G. Metzger. Z. Phys. Chem.211, 1 (1959).Search in Google Scholar

31 T. Tanaka, K. Hack, T. Ida, S. Hara. Z. Metallkunde87, 380 (1996).10.1515/ijmr-1996-870509Search in Google Scholar

32 10.1016/j.jcis.2009.05.023, R. Pajarre, P. Koukkari. J. Colloid Interface Sci.337, 39 (2009).Search in Google Scholar

33 R. Pajarre, P. Koukkari, T. Tanaka. To be published.Search in Google Scholar

34 P. Koukkari, R. Pajarre, E. Räsänen. In Chemical Thermodynamics for Industry, T. M. Letcher (Ed.), pp. 23–32, Royal Society of Chemistry, Cambridge, UK (2004).Search in Google Scholar

35 10.1016/j.molliq.2005.11.016, R. Pajarre, P. Koukkari, E. Räsänen. J. Mol. Liq.125, 58 (2006).Search in Google Scholar

36 M. Towers, A. M. Scallan. J. Pulp Paper Sci.22, J332 (1996).Search in Google Scholar

37 10.1351/PAC-CON-10-09-09, P. Koukkari, R. Pajarre, P. Blomberg. Pure Appl. Chem.83, 1063 (2011).Search in Google Scholar

38 10.1016/S0378-3812(97)00123-4, P. Koukkari, I. Laukkanen, S. Liukkonen. Fluid Phase Equilib.136, 345 (1997).Search in Google Scholar

39 10.1016/j.combustflame.2009.05.013, M. Janbozorgi, S. Ugarte, H. Metghalchi, J. C. Keck. Combust. Flame156, 1871 (2009).Search in Google Scholar

40 R. Gani, T. S. Jepsen, E. S. Pérez-Cisneros Comput. Chem. Eng.22, Suppl., S363 (1998).10.1016/S0098-1354(98)00076-3Search in Google Scholar

41 10.1016/0378-3812(95)02870-6, G. Maurer. Fluid Phase Equilib.116, 39 (1996).Search in Google Scholar

42 10.1134/S004057950902002X, A. Toikka, M. Toikka, Yu. Pisarenko, L. Serafimov. Theor. Found. Chem. Eng.43, 129 (2009).Search in Google Scholar

43 A. Roine, Outokumpu. HSC Chemistry® for Windows, Version 4.1 (1999).Search in Google Scholar

44 10.1016/j.fluid.2004.06.043, A. C. Vawdrey, J. L. Oscarson, R. L. Rowley, W. V. Wilding. Fluid Phase Equilib.222–223, 239 (2004).Search in Google Scholar

45 10.1016/0021-9614(77)90017-9, D. Ambrose, J. H. Ellender, C. H. S. Sprake, R. Townsend. J. Chem. Thermodyn.9, 735 (1977).Search in Google Scholar

46 10.1016/0378-3812(95)02798-J, P. Sauermann, K. Holzapfel, J. Oprzynski, F. Kohler, W. Poot, T. W. de Loos. Fluid Phase Equilib.112, 249 (1995).Search in Google Scholar

47 10.1021/je00052a030, H. S. Wu, S. I. Sandler. J. Chem. Eng. Data33, 157 (1988).Search in Google Scholar

48 B. E. Poling, J. M. Prausnitz, J. M. O’Connell. Properties of Gases and Liquids, 5th ed., McGraw-Hill (2001).Search in Google Scholar

49 10.1016/j.compchemeng.2006.03.001, P. Koukkari, R. Pajarre. Comput. Chem. Eng.30, 1189 (2006).Search in Google Scholar


Conference

International Conference on Chemical Thermodynamics (ICCT-2010), Conference on Chemical Thermodynamics, ICCT, Chemical Thermodynamics, 21st, Tsukuba, Japan, 2010-08-01–2010-08-06


Online erschienen: 2011-5-4
Erschienen im Druck: 2011-5-4

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1351/PAC-CON-10-09-36/html
Scroll to top button