Skip to content
Publicly Available Published by De Gruyter January 1, 2009

Artificial proteases toward catalytic drugs for amyloid diseases

  • Tae Yeon Lee and Junghun Suh

Abstract

We have proposed catalytic drugs based on artificial proteases as a new paradigm in drug design. Catalytic cleavage of the backbone of a protein related to a disease may effect a cure. Catalytic drugs can be designed even for proteins lacking active sites. Soluble oligomers of amyloid β-42 peptide (Aβ42) are implicated as the primary toxic species in amyloid diseases such as Alzheimer's disease (AD). Cleavage of Aβ42 included in an oligomer may provide a novel method for reduction of Aβ42 oligomers, offering a new therapeutic option. The Co(III) complex of cyclen was used as the catalytic center for peptide hydrolysis. Binding sites of the catalysts that recognize the target were searched by using various chemical libraries. Four compounds were selected as cleavage agents for the oligomers of Aβ42. After reaction with the cleavage agents for 36 h at 37 °C and pH 7.50, up to 30 mol % of Aβ42 (4.0 μM) was cleaved, although the target oligomers existed as transient species. Considerable activity was manifested at the concentrations of the agents as low as 100 nM.


Conference

International Conference on Organic Synthesis (ICOS 17), International Conference on Organic Synthesis, ICOS, Organic Synthesis, 17th, Daejeon, Korea, 2008-06-22–2008-06-27


References

1. doi:10.1021/ar020037j, J. Suh. Acc. Chem. Res. 36, 562 (2003).Search in Google Scholar

2. doi:10.1002/9780470144428.ch2, W. S. Chei, J. Suh. Prog. Inorg. Chem. 55, 79 (2007).Search in Google Scholar

3. doi:10.1021/ol0269300, J. W. Jeon, S. J. Son, C. E. Yoo, I. S. Hong, J. B. Song, J. Suh. Org. Lett. 4, 4155 (2002).Search in Google Scholar

4. doi:10.1016/S0968-0896(03)00216-5, J. W. Jeon, S. J. Son, C. E. Yoo, I. S. Hong, J. Suh. Bioorg. Med. Chem. 11, 2901 (2003).Search in Google Scholar

5. B. Jang, J. Suh. Bull. Korean Chem. Soc. 29, 202 (2008).Search in Google Scholar

6. doi:10.1021/ja044043h, P. S. Chae, M.-s. Kim, C.-s. Jeung, S. D. Lee, H. Park, S. Y. Lee, J. Suh. J. Am. Chem. Soc. 127, 2396 (2005).Search in Google Scholar

7. doi:10.1021/bi9919899, P. T. Ravi Rajagopalan, S. Grimme, D. Pei. Biochemistry 39, 779 (2000).Search in Google Scholar

8. doi:10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U, A. Domling, I. Ugi. Angew. Chem., Int. Ed. 39, 3168 (2000).Search in Google Scholar

9. doi:10.1007/s00775-005-0646-4, M.-s. Kim, J. W. Jeon, J. Suh. J. Biol. Inorg. Chem. 10, 364 (2005).Search in Google Scholar

10. W. C. De Mello (Ed.). Renin Angiotensin System and the Heart, John Wiley, New York (2004).10.1002/0470032103Search in Google Scholar

11. doi:10.2337/diabetes.54.10.3049, C. G. Bell, D. Meyre, C. Samson, C. Boyle, C. Lecoeur, M. Tauber, B. Jouret, D. Jaquet, C. Levy-Marchal, M. A. Charles, P. Froguel, A. J. Walley. Diabetes 54, 3049 (2005).Search in Google Scholar

12. doi:10.1007/s00775-006-0139-0, M. G. Kim, M.-s. Kim, S. D. Lee, J. Suh. J. Biol. Inorg. Chem. 11, 867 (2006).Search in Google Scholar

13. M. G. Kim, M.-s. Kim, H. Park, S. Lee, J. Suh. Bull. Korean Chem. Soc. 27, 1151 (2007).Search in Google Scholar

14. D. J. Selkoe. Physiol. Rev. 81, 741 (2001).10.1152/physrev.2001.81.2.741Search in Google Scholar PubMed

15. doi:10.1126/science.1072994, J. Hardy, D. J. Selkoe. Science 297, 353 (2002).Search in Google Scholar

16. doi:10.1038/nn0805-977, R. E. Tanzi. Nat. Neurosci. 8, 977 (2005).Search in Google Scholar

17. doi:10.1038/nn1503, E. M. Snyder, T. Nong, C. G. Almeida, S. Paul, T. Moran, E. Y. Choi, A. C. Nairn, M. W. Salter, P. J. Lombroso, G. K. Gouras, P. Greengard. Nat. Neurosci. 8, 1051 (2005).Search in Google Scholar

18. doi:10.1111/j.1471-4159.2005.03407.x, S. Barghorn, V. Nimmrich, A. Striebinger, C. Krantz, P. Keller, B. Janson, M. Bahr, M. Schmidt, R. S. Bitner, J. Harlan, E. Barlow, U. Ebert, H. Hillen. J. Neurochem. 95, 834 (2005).Search in Google Scholar

19. doi:10.1038/nature04533, S. Lesne, M. T. Koh, L. Kotilinek, R. Kayed, C. G. Glabe, A. Yang, M. Gallagher, K. H. Ashe. Nature 440, 352 (2006).Search in Google Scholar

20. doi:10.1073/pnas.222681699, G. Bitan, M. D. Kirkitadze, A. Lomakin, S. S. Vollers, G. B. Benedek, D. B. Teplow. Proc. Natl. Acad. Sci. USA 100, 330 (2003).Search in Google Scholar

21. doi:10.1038/22124, D. Schenk, R. Barbour, W. Dunn, G. Gordon, H. Grajeda, T. Guido, K. Hu, J. Huang, K. Johnson-Wood, K. Khan, D. Kholodenko1, M. Lee, Z. Liao1, I. Lieberburg, R. Motter, L. Mutter, F. Soriano, G. Shopp, N. Vasquez, C. Vandevert, S. Walker, M. Wogulis, T. Yednock, D. Games, P. Seubert. Nature 400, 173 (1999).Search in Google Scholar

22. doi:10.1073/pnas.151261398, R. B. DeMattos, K. R. Bales, D. J. Cummins, J.-c. Dodart, S. M. Paul, D. M. Holtzman. Proc. Natl. Acad. Sci. USA 98, 8850 (2001).Search in Google Scholar

23. doi:10.1126/science.1093078, C. M. Dobson. Science 304, 1259 (2004).Search in Google Scholar

24. doi:10.1021/bi051525c, T. Cohen, T. Frydman-Marom, M. Rechter, E. Gazit. Biochemistry 45, 4727 (2006).Search in Google Scholar

25. doi:10.1073/pnas.0509725103, D. S. Choi, D. Wang, G.-q. Yu, G. Zhu, V. N. Kharazia, J. P. Paredes, W. S. Chang, J. K. Deitchman, L. Mucke, R. O. Messing. Proc. Natl. Acad. Sci. USA 103, 8215 (2006).Search in Google Scholar

26. doi:10.1002/anie.200702399, J. Suh, S. H. Yoo, M. G. Kim, K. Jeong, J. Y. Ahn, M.-s. Kim, P. S. Chae, T. Y. Lee, J. Lee, J. Lee, Y. A. Jang, E. H. Ko. Angew. Chem., Int. Ed. 46, 7064 (2007).Search in Google Scholar

27. M. W. Parker (Ed.). Protein Toxin Structure, Landes, Austin (1996).10.1007/978-3-662-22352-9Search in Google Scholar

28. doi:10.1080/13506120500106958, G. Bittan, E. A. Fradinger, S. M. Spring, D. B. Teplow. Amyloid 12, 88 (2005).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2009-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1351/PAC-CON-08-07-02/html
Scroll to top button