Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-26T19:12:06.655Z Has data issue: false hasContentIssue false

Density Functional Theory (DFT) Study of the Hydration Steps of Na+/Mg2+/Ca2+/Sr2+/Ba2+-Exchanged Montmorillonites

Published online by Cambridge University Press:  01 January 2024

Abid Berghout
Affiliation:
Laboratoire de Génie Civil et géo-Environment (EA 4515) Lille Nord de France, Ecole Polytechnique de Lille, Université des Sciences et Technologie de Lille, Cité Scientifique, Avenue Paul Langevin, 59655 Villeneuve d’Ascq Cedex, France
Daniel Tunega
Affiliation:
Institute for Theoretical Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria Institute of Soil Research, University of Natural Resources and Applied Life Sciences Vienna, Peter-Jordan-Straße 82, A-1190 Vienna, Austria
Ali Zaoui*
Affiliation:
Laboratoire de Génie Civil et géo-Environment (EA 4515) Lille Nord de France, Ecole Polytechnique de Lille, Université des Sciences et Technologie de Lille, Cité Scientifique, Avenue Paul Langevin, 59655 Villeneuve d’Ascq Cedex, France
*
* E-mail address of corresponding author: azaoui@polytech-lille.fr

Abstract

Theoretical models of the mechanical properties of hydrated smectites, saturated with a variety of cations, are of much value in determining the potential for their use in various applications, including clay-polymer nanocomposites, but the development of such models is still in its infancy. The purpose of this study was to calculate the effects of divalent cations on the structural and mechanical elasticity of montmorillonite under different degrees of hydration. A theoretical study of the swelling and hydration behavior of montmorillonite was, therefore, undertaken using density functional theory (DFT) to investigate the basal spacing behavior of the homoionic montmorillonite with varying amounts of water in the interlayer space. The effect of the degree of the hydration of divalent interlayer cations (Mg2+/Ca2+/ Sr2+/Ba2+) on the structure expansion of the interlayer space was analyzed. In addition, the results obtained were compared to calculations performed on the montmorillonite model with a monovalent cation (Na+). The basal spacing (d001) is governed by the size and the degree of hydration of the countercations. The structures containing divalent cations are more compact than structures with monovalent cations. Ba-exchanged montmorillonite was found to have the largest d001 value for any degree of hydration (‘dry,’ one water layer, or two layers). The basal spacings of ‘dry’ montmorillonite exchanged with small cations, Mg2+ and Ca2+, are very similar. In hydrated models, the d001 expansion correlates with the ionic radius of the interlayer cation. The dependence of the total electronic energy on the volume expansion was calculated. From the energetic curves, bulk modulus (B0) was obtained by fitting in order to show how the compliance of the material depends on the type of interlayer cation and on the degree of hydration. With increasing water content in the interlayer space, the bulk modulus decreased, suggesting that the c-axial compression becomes easier with increasing hydration of the clay mineral. The values of the bulk modulus in hydrated systems are less sensitive to the type of the interlayer cation.

Type
Article
Copyright
Copyright © Clays and Clay Minerals 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramova, E L L and Yariv, S., 2007 Thermo-XRD investigation of monoionic montmorillonites mechano-chemically treated with urea Journal of Thermal Analysis and Calorimetry 90 99106 10.1007/s10973-007-8482-0.CrossRefGoogle Scholar
Bailey, S.W., 1988 Hydrous Phyllosilicates (Exclusive of Micas) .CrossRefGoogle Scholar
Bains, A.S. Boek, E.S. Coveney, P.V. Williams, S.J. and Akbar, M.V., 2001 Molecular modelling of the mechanism of action of organic clay-swelling inhibitors Molecular Simulation 26 101145 10.1080/08927020108023012.CrossRefGoogle Scholar
Becke, A.D., 1988 Density-functional exchange-energy approximation with correct asymptotic behavior Physical Review A 38 30983100 10.1103/PhysRevA.38.3098.CrossRefGoogle ScholarPubMed
Bérend, I. Cases, J.-M. Francois, M. Uriot, J.-P. Michot, L. Masion, A. and Thomas, F., 1995 Mechanism of adsorption and desorption of water vapor by homoionic montmor-illonites; 2, The Li+, Na+, K+, Rb+ and Cs+-exchanged forms Clays and Clay Minerals 43 324336 10.1346/CCMN.1995.0430307.CrossRefGoogle Scholar
Birch, F., 1947 Finite elastic strain of cubic crystals Physical Review 71 809824 10.1103/PhysRev.71.809.CrossRefGoogle Scholar
Blöchl, P.E., 1994 Projector augmented-wave method Physical Review B 50 1795317979 10.1103/PhysRevB.50.17953.CrossRefGoogle ScholarPubMed
Boek, E.S. and Sprik, M., 2003 Ab initio molecular dynamics study of the hydration of a sodium smectite clay The Journal of Physical Chemistry B 107 32513256 10.1021/jp0262564.CrossRefGoogle Scholar
Boek, E.S. Coveney, P.V. and Skipper, N.T., 1995 Monte Carlo molecular modeling studies of hydrated Li-, Na-, and K-Smectites: Understanding the role of potassium as a clay swelling inhibitor Journal of the American Chemical Society 117 1260812617 10.1021/ja00155a025.CrossRefGoogle Scholar
Botella, V. Timon, V. Escamilla-Roa, E. Hernandez-Laguna, A. and Sainz-Diaz, C.I., 2004 Hydrogen bonding and vibrational properties of hydroxy groups in the crystal lattice of dioctahedral clay minerals by means of first principles calculations Physics and Chemistry of Minerals 31 475486 10.1007/s00269-004-0398-7.CrossRefGoogle Scholar
Bray, H.J. and Redfern, S.A.T., 1999 Kinetics of dehydration of Ca-montmorillonite Physics and Chemistry of Minerals 26 591600 10.1007/s002690050223.CrossRefGoogle Scholar
Bray, H.J. and Redfern, S.A.T., 2000 Influence of counterion species on the dehydroxylation of Ca2+-, Mg2+-, Na+- and K+-exchanged Wyoming montmorillonite Mineralogical Magazine 64 337346 10.1180/002646100549238.CrossRefGoogle Scholar
Bray, H.J. Redfern, S.A.T. and Clark, S.M., 1998 The kinetics of dehydration in Ca-montmorillonite; an in situ X-ray diffraction study Mineralogical Magazine 62 647656 10.1180/002646198548034.CrossRefGoogle Scholar
Cases, J.-M. Bérend, I. Francois, M. Uriot, J.-P. Michot, L.J. and Thomas, F., 1997 Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite. 3. The Mg2+, Ca2+, Sr2+ and Ba2+ exchanged forms Clays and Clay Minerals 45 822 10.1346/CCMN.1997.0450102.CrossRefGoogle Scholar
Chang, F.R.C. Skipper, N.T. and Sposito, G., 1995 Computer-simulation of interlayer molecular-structure in sodium montmorillonite hydrates Langmuir 11 27342741 10.1021/la00007a064.CrossRefGoogle Scholar
Chatterjee, A., 2005 Application of localized reactivity index in combination with periodic DFT calculation to rationalize the swelling mechanism of clay type inorganic material Journal of Chemical Sciences 117 533539 10.1007/BF02708359.CrossRefGoogle Scholar
Chatterjee, A. Ebina, T. Onodera, Y. and Mizukami, F., 2004 Effect of exchangeable cation on the swelling property of 2:1 dioctahedral smectite — a periodic first principle study The Journal of Chemical Physics 120 34143424 10.1063/1.1640333.CrossRefGoogle ScholarPubMed
Châvez-Pâez, M. Van Workum, K. de Pablo, L. and de Pablo, J.J., 2001 Monte Carlo simulations of Wyoming sodium montmorillonite hydrates The Journal of Chemical Physics 114 14051413 10.1063/1.1322639.CrossRefGoogle Scholar
Châvez-Pâez, M. de Pablo, L. and de Pablo, J.J., 2001 Monte Carlo simulations of Ca-montmorillonite hydrates The Journal of Chemical Physics 114 1094810953 10.1063/1.1374536.CrossRefGoogle Scholar
Cuadros, J., 1997 Interlayer cation effects on the hydration state of smectite American Journal of Science 297 829841.CrossRefGoogle Scholar
Dios Cancela, G. Huertas, F.G. Romero Taboada, E. Sánchez-Rasero, F. and Hernández Laguna, A., 1997 Adsorption of water vapor by homoionic montmorillonites. Heats of adsorption and desorption Journal of Colloid and Interface Science 185 343354 10.1006/jcis.1996.4572.CrossRefGoogle Scholar
Drits, V.A., 2003 Structural and chemical heterogeneity of layer silicates and clay minerals Clay Minerals 38 403432 10.1180/0009855033840106.CrossRefGoogle Scholar
Fang, Q.H. Huang, S.P. Liu, Z.P. and Wang, W.C., 2004 Molecular dynamics simulation of magnesium-montmoril-lonite hydrates Acta Chimica Sinica 62 24072414.Google Scholar
Ferrage, E. Lanson, B. Sakharov, B.A. and Drits, V.A., 2005 Investigation of smectite hydration properties by modeling of X-ray diffraction profiles. Part 1. Montmorillonite hydration properties American Mineralogist 90 13581374 10.2138/am.2005.1776.CrossRefGoogle Scholar
Ferrage, E. Lanson, B. Sakharov, B.A. Geoffroy, N. Jacquot, E. and Drits, V.A., 2007 Investigation of dioctahedral smectite hydration properties by modeling of X-ray diffraction profiles: Influence of layer charge and charge location American Mineralogist 92 17311743 10.2138/am.2007.2273.CrossRefGoogle Scholar
Ferrage, E. Kirk, C.A. Cressey, G. and Cuadros, J., 2007 Dehydration of Ca-montmorillonite at the crystal scale. Part I: Structure evolution American Mineralogist 92 9941006 10.2138/am.2007.2396.CrossRefGoogle Scholar
Fu, M.H. Zhang, Z.Z. and Low, P.F., 1990 Changes in the properties of a montmorillonite-water system during the adsorption and desorption of water: hysteresis Clays and Clay Minerals 38 485492 10.1346/CCMN.1990.0380504.CrossRefGoogle Scholar
Giese, Rossman and van Oss, Carel, 2002 Colloid And Surface Properties Of Clays And Related Minerals 10.1201/9780203910658.CrossRefGoogle Scholar
Greathouse, J.A. and Storm, E.W., 2002 Calcium hydration on montmorillonite clay surfaces studied by Monte Carlo simulation Molecular Simulation 28 633647 10.1080/0892702029003.CrossRefGoogle Scholar
Greathouse, J.A. Refson, K. and Sposito, G., 2000 Molecular dynamics simulation of water mobility in magnesium-smectite hydrates Journal of the American Chemical Society 122 1145911464 10.1021/ja0018769.CrossRefGoogle Scholar
Guindy, N.M. El-Akkad, T.M. Flex, N.S. El-Massry, S.R. and Nashed, S., 1985 Thermal dehydration of mono- and di-valent montmorillonite cationic derivatives Thermochimica Acta 88 369378 10.1016/0040-6031(85)85457-5.CrossRefGoogle Scholar
Hernández-Laguna, A. Escamilla-Roa, E. Timón, V. Dove, M.T. and Sainz-Diaz, C.I., 2006 DFT study of the cation arrangements in the octahedral and tetrahedral sheets of dioctahedral 2:1 phyllosilicates Physics and Chemistry of Minerals 33 655666 10.1007/s00269-006-0120-z.CrossRefGoogle Scholar
Kantam, M.L. Choudary, B.M. Reddy, C.V. Rao, K.K. and Figueras, F., 1998 Aldol and Knoevenagel condensations catalysed by modified Mg-Al hydrotalcite: a solid base as catalyst useful in synthetic organic chemistry Chemical Communications 10331034.CrossRefGoogle Scholar
Kato, M. Usuki, A., Pinnavaia, T.J. Beall, G.W., 2000 Polymer-clay nanocomposites Polymer-Layered Silicate Nanocomposites New York Wiley 612.Google Scholar
Keren, R. and Shainberg, I., 1975 Water vapor isotherms and heat of immersion of Na/Ca-montmorillonite systems; I. Homoionic clay Clays and Clay Minerals 23 193200 10.1346/CCMN.1975.0230305.CrossRefGoogle Scholar
Kosakowski, G. Churakov, S.V. and Thoenen, T., 2008 Diffusion of Na and Cs in montmorillonite Clays and Clay Minerals 56 190206 10.1346/CCMN.2008.0560205.CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J., 1996 Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set Computational Materials Science 6 1550 10.1016/0927-0256(96)00008-0.CrossRefGoogle Scholar
Kresse, G. and Hafner, J., 1993 Ab initio molecular dynamics for open-shell transition metals Physical Review B 48 1311513118 10.1103/PhysRevB.48.13115.CrossRefGoogle ScholarPubMed
Kresse, G. and Joubert, D., 1999 From ultrasoft pseudopotentials to the projector augmented-wave method Physical Review B 59 17581775 10.1103/PhysRevB.59.1758.CrossRefGoogle Scholar
Liu, Z. Chen, K. and Yan, D., 2003 Crystallization, morphology, and dynamic mechanical properties of poly (trimethylene terephthalate)/clay nanocomposites European Polymer Journal 39 23592366 10.1016/S0014-3057(03)00166-6.CrossRefGoogle Scholar
Majumdar, D. Blanton, T.N. and Schwark, D.W., 2003 Clay-polymer nanocomposite coatings for imaging application Applied Clay Science 23 265273 10.1016/S0169-1317(03)00126-1.CrossRefGoogle Scholar
Manceau, A. Lanson, B. Drits, V.A. Chateigner, D. Gates, W.P. Wu, J. Huo, D. and Stucki, J.W., 2000 Oxidation-reduction mechanism of iron in dioctahedral smectites: I. Crystal chemistry of oxidized reference nontronites American Mineralogist 85 133152 10.2138/am-2000-0114.CrossRefGoogle Scholar
Manju, G.N. Gigi, M.C. and Anirudhan, T.S., 1999 Hydrotalcite as adsorbent for the removal of chromium (VI) from aqueous media: equilibrium studies Indian Journal of Chemical Technology 6 134.Google Scholar
Marry, V. Turq, P. Cartailler, T. and Levesque, D., 2002 Microscopic simulation of structure and dynamics of water and counterions in a monohydrated montmorillonite Journal of Chemical Physics 117 34543463 10.1063/1.1493186.CrossRefGoogle Scholar
McEwan, D.M.C. Wilson, M.J., Brindley, G.W. Brown, G., 1980 Interlayer and intercalation complexes of clay minerals Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 197248.CrossRefGoogle Scholar
Meleshyn, Artur and Bunnenberg, Claus, 2005 Swelling of Na∕Mg-montmorillonites and hydration of interlayer cations: A Monte Carlo study The Journal of Chemical Physics 123 7 074706 10.1063/1.2011392.CrossRefGoogle ScholarPubMed
Minisini, B. and Tsobnang, F., 2005 Ab initio comparative study of montmorillonite structural models Applied Surface Science 141 2128 10.1016/j.apsusc.2004.07.057.CrossRefGoogle Scholar
Odriozola, G. and Aguilar, J. F., 2005 Stability of Ca-montmorillonite hydrates: A computer simulation study The Journal of Chemical Physics 123 17 174708 10.1063/1.2087447.CrossRefGoogle ScholarPubMed
Odriozola, G. and de Guevara-Rodriguez, F J, 2004 Namontmorillonite hydrates under basin conditions: Hybrid Monte Carlo and molecular dynamics simulations Langmuir 20 20102016 10.1021/la035784j.CrossRefGoogle Scholar
Park, S.-H. and Sposito, G., 2000 Monte Carlo simulation of total radial distribution functions for interlayer water in Li-, Na-, and K-montmorillonite hydrates The Journal of Physical Chemistry B 104 46424648 10.1021/jp993017g.CrossRefGoogle Scholar
Perdew, J.P., 1986 Density-functional approximation for the correlation energy of the inhomogeneous electron gas Physical Review B 33 88228824 10.1103/PhysRevB.33.8822.CrossRefGoogle ScholarPubMed
Perdew, J.P. and Wang, Y., 1992 Accurate and simple analytic representation of the electron-gas correlation energy Physical Review B 45 1324413249 10.1103/PhysRevB.45.13244.CrossRefGoogle ScholarPubMed
Perdew, J.P. and Zunger, A., 1981 Self-interaction correction to density-functional approximations for many-electron systems Physical Review B 23 50485079 10.1103/PhysRevB.23.5048.CrossRefGoogle Scholar
Perdew, J.P. Burke, K. and Ernzerhof, M., 1996 Generalized gradient approximation made simple Physical Review Letters 11 38653868 10.1103/PhysRevLett.77.3865.CrossRefGoogle Scholar
Perkins, D., 1998 Mineralogy: Upper Saddle River New Jersey Prentice Hall.Google Scholar
Posner, A.M. and Quirk, J.P., 1964 Changes in basal spacing of montmorillonite in electrolyte solutions Journal of Colloid Science 19 798812 10.1016/0095-8522(64)90056-X.CrossRefGoogle Scholar
Qin, H. Su, Q. Zhang, S. Zhao, B. and Yang, M., 2003 Thermal stability and flammability of polyamide 66/montmorillonite nanocomposites Polymer 44 75337538 10.1016/j.polymer.2003.09.014.CrossRefGoogle Scholar
Rutherford, D.W. Chiou, C.T. and Eberl, D.D., 1997 Effects of exchanged cation on the microporosity of montmorillonite Clays and Clay Minerals 45 534543 10.1346/CCMN.1997.0450405.CrossRefGoogle Scholar
Sainz-Diaz, C.L. Timon, V. Botella, V. Artacho, E. and Hernândez-Laguna, A., 2002 Quantum mechanical calculations of dioctahedral 2:1 phyllosilicates: Effect of octahedral cation distributions in pyrophyllite, illite, and smectite American Mineralogist 87 958965 10.2138/am-2002-0719.CrossRefGoogle Scholar
Sato, T. Watanabe, T. and Otsuka, R., 1992 Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites Clays and Clay Minerals 40 103113 10.1346/CCMN.1992.0400111.CrossRefGoogle Scholar
Skipper, N.T. Chang, F.-R. and Sposito, G., 1995 Monte Carlo simulation of interlayer molecular structure in swelling clay minerals. 1. Methodology Clays and Clay Minerals 43 285293 10.1346/CCMN.1995.0430303.CrossRefGoogle Scholar
Skipper, N.T. Chang, F.-R. and Sposito, G., 1995 Monte Carlo simulation of interlayer molecular structure in swelling clay minerals; 2, Monolayer hydrates Clays and Clay Minerals 43 294303 10.1346/CCMN.1995.0430304.CrossRefGoogle Scholar
Skipper, N.T. Refson, K. and McConnell, J.D.C., 1991 Computer simulation of interlayer water in 2:1 clays The Journal of Chemical Physics 94 74347445 10.1063/1.460175.CrossRefGoogle Scholar
Skipper, N.T. Lock, P.A. Titiloye, J.O. Swenson, J. Mirza, Z.A. Howells, W.S. and Fernandez-Alonso, F., 2006 The structure and dynamics of 2-dimensional fluids in swelling clays Chemical Geology 230 182196 10.1016/j.chemgeo.2006.02.023.CrossRefGoogle Scholar
Slade, P.G. Quirk, J.P. and Norrish, K., 1991 Crystalline swelling of smectite samples in concentrated NaCl solutions in relation to layer change Clays and Clay Minerals 39 234238 10.1346/CCMN.1991.0390302.CrossRefGoogle Scholar
Stucki, J.W., Stucki, J.W. Goodman, B.A. Schwertmann, U., 1988 Structural iron in smectites Iron in Soils and Clay Minerals Dordrecht, The Netherlands D. Reidel Publishing Co. 625675 10.1007/978-94-009-4007-9_17.CrossRefGoogle Scholar
Suquet, H. de la Calle, C. and Pezerat, H., 1975 Swelling and structural organization of saponite Clays and Clay Minerals 23 19 10.1346/CCMN.1975.0230101.CrossRefGoogle Scholar
Suter, J.L. Boek, E.S. and Sprik, M., 2008 Adsorption of a sodium ion on a smectite clay from constrained ab initio molecular dynamics simulations The Journal of Physical Chemistry C 112 1883218839 10.1021/jp075946a.CrossRefGoogle Scholar
Tambach, T.J. Hensen, E.J.M. and Smit, B., 2004 Molecular simulations of swelling clay minerals The Journal of Physical Chemistry B 108 75867596 10.1021/jp049799h.CrossRefGoogle Scholar
Timon, V. Sainz-Diaz, C.I. Botella, V. and Hernândez-Laguna, A., 2003 Isomorphous cation substitution in dioctahedral phyllosilicates by means of ab initio quantum mechanical calculations on clusters American Mineralogist 88 17881795 10.2138/am-2003-11-1219.CrossRefGoogle Scholar
Tsipursky, I. and Drits, V.A., 1984 The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction Clay Minerals 19 177193 10.1180/claymin.1984.019.2.05.CrossRefGoogle Scholar
Tunega, D. Goodman, B.A. Haberhauer, G. Reichenauer, T.G. Gerzabek, M.H. and Lischka, H., 2007 Ab initio calculations of relative stabilities of different structural arrangements in dioctahedral phyllosilicates Clays and Clay Minerals 55 220232 10.1346/CCMN.2007.0550211.CrossRefGoogle Scholar
Velde, B., 1995 Origin and Mineralogy of Clays New York Springer-Verlag 10.1007/978-3-662-12648-6.CrossRefGoogle Scholar
Wan, C. Qiao, X. Zhang, Y. and Zhang, Y., 2003 Effect of different clay treatment on morphology and mechanical properties of PVC-clay nanocomposites Polymer Testing 22 453461 10.1016/S0142-9418(02)00126-5.CrossRefGoogle Scholar
Whitley, H.D. and Smith, D.E., 2004 Free energy, energy, and entropy of swelling in Cs-, Na- and Sr-montmorillonite clays The Journal of Chemical Physics 120 53875395 10.1063/1.1648013.CrossRefGoogle Scholar
Zabat, M. and Van Damme, H., 2000 Evaluation of the energy barrier for dehydration of homoionic (Li, Na, Cs, Mg, Ca, Ba, Alx(OH)z+y and La)-montmorillonite by a differentiation method Clay Minerals 35 357363 10.1180/000985500546828.CrossRefGoogle Scholar
Zhang, Y.-H. Dang, Z.-M. Fu, S.-Y. Xin, J.H. Deng, J.-G. Wu, J. Yang, S. Li, L.-F. and Yan, Q., 2005 Dielectric and dynamic mechanical properties of polyimide-clay nanocomposite films Chemical Physics Letter 401 553557 10.1016/j.cplett.2004.11.084.CrossRefGoogle Scholar