Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-11T18:52:33.148Z Has data issue: false hasContentIssue false

The Composition and Origin of Vanadium-Rich Clay Minerals in Colorado Plateau Jurassic Sandstones

Published online by Cambridge University Press:  28 February 2024

J. D. Meunier*
Affiliation:
GS CNRS-CREGU, CREGU, BP23, 54501, Vandoeuvre les Nancy, France
*
*Present address: Laboratoire de Geosciences de l'Environment, URA CNRS 132 Case 431, Université d'Aix-Marseille III, 13397 Marseille Cedex 20, France

Abstract

The composition and origin of vanadium-bearing clay minerals in the Jurassic (Morrison and Entrada Formations) sandstones of the Colorado Plateau are reassessed using microanalyses (microprobe and scanning electron microscope). The main V-clays are authigenic illite and chlorite of various petrologic habits: clay casts and matrix, pore lining, replacement of detrital grains. The chemical composition of the V-clays is similar in three different localities in the Morrison Formation separated by about 50 km, suggesting that the V-clays are the result of a large regional event. In both illite and chlorite, Al and V are inversely correlated, showing that V replaces Al in the octahedral position. The chlorite contains a complex mixture of divalent and trivalent cations that cannot fit within a sudoite structure. A classification of V-micas is proposed that employs V3+/sum of the octahedral cations vs. the sum of the interlayer charges. V-illite and roscoelite from the Colorado Plateau are characteristic of diagenetic/hydrothermal environments. For a given locality the composition of the V-clays does not vary with habit, showing that these minerals formed at thermodynamic equilibrium.

Type
Research Article
Copyright
Copyright © 1994, Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aagaard, P., and Jahren, J. S., (1992) Diagenetic illite-chlorite assemblages in arenites. II Thermodynamic relations: Clays & Clay Minerals 40, 547554.CrossRefGoogle Scholar
Ahn, J. H., and Peacor, D. R., (1985) Transmission electron macroscopic study of diagenetic chlorite in Gulf Coast argillaceous sediments: Clays & Clay Minerals 33, 228236.CrossRefGoogle Scholar
Bailey, S. W., (1986) Report of AIPEA nomenclature committee (Illite, glauconite, volkonskoite): Supplement to AIPAE Newsletter 22, 3 pp.Google Scholar
Bailey, S. W., and Lister, J. S., (1989) Structures, composition, and X-ray diffraction identification of dioctahedral chlorites: Clays & Clay Minerals 37, 193202.CrossRefGoogle Scholar
Boles, J. R., and Franks, S. G., (1979) Clay diagenesis in Wilcox sandstones of southwest Texas: Implications of smectite diagenesis on sandstone cementation: J. Sed. Pet. 49, 5570.Google Scholar
Breit, G. N., (1986) Geochemical study of authigenic minerals in the Salt Wash member of the Morrison formation, Slick Rock District, San Miguel County, Colorado: Ph. D. dissertation, Colorado School of Mines, 267 p.Google Scholar
Breit, G. N., Goldhaber, M. B., Shawe, D. R., and Simmons, E. G., (1990) Authigenic barite as an indicator of fluid movement through sandstones within the Colorado Plateau: J. Sed. Pet. 60, 884896.Google Scholar
Breit, G. N., and Wanty, R. B., (1991) Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis: Chem. Geol. 91, 8397.CrossRefGoogle Scholar
Brookins, D. G., (1990) Clay minerals in sandstone uranium deposits: Radwaste applications: Sci. Géol. Mém. 87, 8596.Google Scholar
Eggleston, R. A., and Bailey, S. W., (1967) Structural aspects of dioctahedral chlorite: Amer. Mineral. 52, 673689.Google Scholar
Fischer, R. P., Haff, J. C., and Rominger, J. F., (1947) Vanadium deposits near Placerville, San Miguel County, Colorado: Colorado Scientific Society Proc. 15, 117134.Google Scholar
Forbes, P., (1989) Roles des strutures sédimentaires et tectoniques, du volcanisme alcalin regional et des fluides diagénétiques-hydrothermaux pour la formation des minéralisations à U-Zr-Zn-V-Mo d'Akouta (Niger): Géol. Géochim. Uranium, Mem., Nancy, France 17, 376 pp.Google Scholar
Forbes, P., and Dubessy, J., (1988) Characterization of fresh and altered montroseite [V,Fe]OOH. A discussion of alteration processes: Phys. Chem. Minerals 15, 438445.CrossRefGoogle Scholar
Foster, M. D., (1959) Chemical study of the mineralized clays: U.S. Geol. Surv. Prof. Pap. 320, 121132.Google Scholar
Foster, M. D., (1962) Interpretation of the composition and a classification of the chlorites: U. S. Geol. Surv. Prof. Pap. 414–A, 33 pp.Google Scholar
Guven, N., and Hower, W. F., (1979) A vanadium smectite: Clay Miner. 14, 241.CrossRefGoogle Scholar
Harvey, C. C., and Browne, P. R. L., (1991) Mixed-layer clay geothermometry in the Wairakei geothermal field, New Zealand: Clays & Clay Minerals 39, 614621.CrossRefGoogle Scholar
Hathaway, J. C., (1959) Mixed-layer structures in vanadium clays: U. S. Geol. Surv. Prof. Pap. 320, 133138.Google Scholar
Hayes, J. B., (1970) Polytypism of chlorite in sedimentary rocks: Clays & Clay Minerals 18, 285306.CrossRefGoogle Scholar
Heinrich, E. W., and Levinson, A. A., (1955) Studies in the mica group: X-ray data on roscoelite and barium-muscovite: Amer. J. Sci. 253, 3943.CrossRefGoogle Scholar
Helgeson, H. C., Delany, J. M., Nesbitt, H. W., and Bird, D. K., (1978) Summary and critique of the thermodynamic properties of rock forming minerals: Amer. J. Sci. 267, 729804.CrossRefGoogle Scholar
Henoc, J., and Tong, M., (1978) Automatisation de la microsonde: J. Microsc. Spectrosc. Electron. 3, 247254.Google Scholar
Hillebrand, W. F., Turner, H. W., and Clarke, F. W., (1899) On roscoelite: Amer. J. Sci. 7, 451458.CrossRefGoogle Scholar
Hillier, S., and Velde, B., (1991) Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites: Clay Miner. 26, 149168.CrossRefGoogle Scholar
Hofman, B. A., (1990) Reduction spheroids from northern Switzerland: Mineralogy, geochemistry and genetic models: Chem. Geol. 81, 5581.CrossRefGoogle Scholar
Hower, J., Eslinger, E. V., Hower, M. E., and Perry, E. A., (1976) Mechanism of burial metamorphism of argillaceous sediments: I. Mineralogical and chemical evidence: Geol. Soc. Amer. Bull. 87, 725737.2.0.CO;2>CrossRefGoogle Scholar
Hurst, A., and Irwin, H., (1982) Geological modelling of clay diagenesis in sandstones: Clay Miner. 17, 522.CrossRefGoogle Scholar
Jahren, J. S., and Aagaard, P., (1989) Compositional variations in diagenetic chlorite and illite, and relationships with formation-water chemistry: Clay Miner. 24, 157170.CrossRefGoogle Scholar
Jahren, J. S., and Aagaard, P., (1992) Diagenetic illite-chlorite assemblages in arenites. I. Chemical evolution: Clays & Clay Minerals 40, 540546.CrossRefGoogle Scholar
Johan, Z., and Povondra, P., (1987) Vanadium- and copper-bearing dolomite nodules from Permian sediments near Horni Kalna, Czechoslovakia: Neues Jahrbuch Miner. Abh. 157, 245266.Google Scholar
Keller, W. D., (1962) Clay minerals in the Morrison Formation of the Colorado Plateau: U. S. Geol. Surv. Bull. 1150, 90 pp.Google Scholar
Landais, P., Monthioux, M., and Meunier, J. D., (1984) Importance of the oxidation/maturation pair in the evolution of humic coals: Org. Geochem. 7, 249260.Google Scholar
Maylotte, D. H., Wong, J., St. Peters, R. L., Lytle, F. W., and Greegor, R. B., (1981) X-ray absorption spectroscopic investigation of trace vanadium sites in coal: Science 214, 554556.CrossRefGoogle ScholarPubMed
McCormick, G. R., (1978) Vanadium-titanium-bearing mixed-layered clay from potash sulphur springs, Arkansas: Clays & Clay Minerals 26, 93100.CrossRefGoogle Scholar
Meunier, J. D., (1984) Les phénomènes d'oxydo-réduction dans un gisement urano-vanadifère de type tabulaire: Les grès du Salt-Wash (Jurassique Supérieur), district minier de Cottonwood-Wash (Utah, Etats Unis): Géol Géochim. Unranium, Mem., Nancy, France 4 214 pp.Google Scholar
Meunier, J. D., (1989) Les mécanismes de concentration de l'uranium dans les sédiments: genèse des gisements de type tabulaire: Ph. D. dissertation, Université Nancy I, France, 313 pp.Google Scholar
Meunier, J. D., Landais, P., Monthioux, M., and Pagel, M., (1987) Oxidation-reduction processes in the genesis of the uranium-vanadium tabular deposits of the Cottonwood-Wash mining area (Utah, U.S.A.): Evidence from petrological and organic matter analysis: Bull. Minéral. 110, 145156.CrossRefGoogle Scholar
Meunier, J. D., Sellier, E., and Pagel, M., (1990) Radiation-damage rims in quartz from uranium-bearing sandstones: J. Sed. Pet. 60, 5358.Google Scholar
Millot, G., (1970) Geology of Clays: Springer-Verlag, New York, 429 pp.CrossRefGoogle Scholar
Northrop, H. R., and Goldhaber, M. B., 1990 eds. () Genesis of the tabular-type vanadium-uranium deposits of the Henry Basin, Utah: Econ. Geol. 85, 215269.CrossRefGoogle Scholar
Oh, C. H., and Trichet, J., (1990) L'uranium dans les schistes noirs de Goesan (Ogcheon, Corée): Relations entre matière organique et uranium: C. R. Acad. Sci., Paris 310, 241245.Google Scholar
Pan, Y., and Fleet, M. E., (1992) Mineral chemistry and geochemistry of vanadian silicates in the Hemlo gold deposit, Ontario, Canada: Contrib. Mineral. Petrol. 109, 511525.CrossRefGoogle Scholar
Parnell, J., (1988) The mineralogy of red bed uranium-vanadium mineralization in the Permo-Triassic of Belfast: Irish J. Earth Sci., 9, 119124.Google Scholar
Peterson, F., and Turner-Peterson, C. E., (1980) Lacustrine-humate model: Sedimentologic and geochemical model for tabular sandstone uranium deposits in the Morrison Formation, Utah, and application to uranium exploration: U. S. Geol. Survey Open-File Rept. 80–319, 40 pp.Google Scholar
Schade, J., Ohnenstetter, D., and Girault, J., (1986) Première découverte de roscoélite en France, dans le Permien uranifère des Alpes. Intérêt métallogénique de ce micas vanadifère: C. R. Acad. Sc. 302, 427430.Google Scholar
Schultz, M. D., (1963) Clay minerals in triassic rocks of the Colorado Plateau: U. S. Geol. Surv. Bull. 1147–C, 71 pp.Google Scholar
Snetsinger, K. G., (1966) Barium-vanadium muscovite and vanadium tourmaline from Mariposa County, California: Amer. Mineral. 51, 16231639.Google Scholar
Velde, B., (1985) Clay minerals—A physico-chemical explanation of their occurrence: Dev. in Sedimentology 40, Elsevier, Amsterdam , 427 pp.Google Scholar
Velde, B., and Medhioub, M., (1988) Approach to chemical equilibrium in diagenetic chlorites: Contrib. Mineral. Petrol. 98, 122127.CrossRefGoogle Scholar
Velde, B., El Moutaouakkil, N., and Iijima, A., (1991) Compositional homogeneity in low-temperature chlorites: Contrib. Mineral. Petrol. 107, 2126.CrossRefGoogle Scholar
Walker, J. R., (1989) Polytypism of chlorite in very low grade metamorphic rocks: Amer. Mineral. 74, 738743.Google Scholar
Wanty, R. B., and Goldhaber, M. B., (1985) A method for the determination of vanadium and iron oxidation states in naturally occurring oxides and silicates: Talanta 32, 395398.CrossRefGoogle ScholarPubMed
Wanty, R. B., and Goldhaber, M. B., (1992) Thermodynamics and kinetics of reactions involving vanadium in natural systems: Accumulation of vanadium in sedimentary rocks: Geochim. Cosmochim. Acta 56, 14711483.CrossRefGoogle Scholar
Wanty, R. B., Goldhaber, M. B., and Northrop, H. R., (1990) Geochemistry of vanadium in an epigenetic, sandstone-hosted vanadium-uranium deposit, Henry Basin, Utah: Econ. Geol. 85, 270284.CrossRefGoogle Scholar
Waters, A. C., and Granger, H. C., (1953) Volcanic debris in uraniferous sandstones and its possible bearing on the origin and precipitation of uranium: U. S. Geol. Surv. Circ. 224, 26 pp.Google Scholar
Wells, R. C., and Brannock, W. W., (1946) The composition of roscoelite: U. S. Geol. Surv. Bull. 950, 121127.Google Scholar
Whitney, G., and Northrop, H. R., (1986) Vanadium-chlorite from a sandstone-hosted vanadium-uranium deposit, Henry Basin, Utah: Clays & Clay Minerals 34, 488495.CrossRefGoogle Scholar
Wilson, M. D., and Pittman, E. D., (1977) Authigenic clays in sandstones: Recognition and influence on reservoir properties and paleoenvironmental analysis: J. Sed. Pet. 47, 331.Google Scholar
Yoshimura, T., and Momoi, H., (1964) Vanadium silicate minerals from the Yamato Mine, Kagoshima Prefecture, Japan: Sci. Rep. Kyushu Univ. Geol. 7, 8590.Google Scholar