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Abstract. Distributed radar network systems (DRNS) have 
been shown to provide significant performance improve-
ment. With the recent development, radar network has 
become an attractive platform for target tracking. In prac-
tice, the netted radars in DRNS are supposed to maximize 
their transmitting power to achieve better target tracking 
performance, which may be in contradiction with low 
probability of intercept (LPI). This paper investigates the 
problem of adaptive resource scheduling based on time 
difference of arrival (TDOA) cooperation for target track-
ing by DRNS consisting of a dedicated radar netting sta-
tion and multiple netted radars. Firstly, the standard inter-
acting multiple model (IMM) algorithm incorporating 
extended Kalman filter (EKF) is improved by modifying the 
Markov transition probability with current measurements. 
Then, a novel resource scheduling strategy based on 
TDOA cooperation is presented, in which the LPI perfor-
mance for target tracking in DRNS is improved by optimiz-
ing the radar revisit interval and the transmitted power for 
a predefined target tracking accuracy. The comparison of 
the predictive error covariance matrix and the expected 
error covariance matrix is utilized to control the radar 
netting station under intermittent-working state with TDOA 
cooperation. Due to the lack of analytical closed-form 
expression for receiver operating characteristics (ROC), 
we utilize several popular information-theoretic criteria, 
namely, Bhattacharyya distance, Kullback-Leibler (KL) 
divergence, J-divergence, and mutual information (MI) as 
the metrics for target detection performance in target 
tracking process. The resulting optimization problems 
which are associated with different information-theoretic 
criteria are unified under a common framework. The non-
linear programming (NP) based genetic algorithm (GA) or 
else known as NPGA is employed to encounter with the 
highly nonconvex and nonlinear optimization problems in 
the framework. Numerical results demonstrate that the 
proposed algorithm not only has excellent target tracking 
accuracy, but also has better LPI performance comparing 
to other methods. 
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1. Introduction 

1.1 Background and Motivation 

Distributed radar network systems (DRNS), also 
known as spatial distributed multiple-input multiple-output 
(MIMO) radar systems [1], [2], have been attracting con-
tentiously growing attention towards practical use due to 
their advantage of signal and spatial diversities. In addition 
to aforementioned, considerable research has been con-
ducted relevant to the potential use of radar networks for 
achieving systems performance improvement correlated to 
target detection [3–7], target localization [8], [9], target 
tracking [10–13], waveform design [14–16], sensor 
selection [17], and information extraction. 

The research on distributed radar network architec-
tures has received increasing impetus in recent years, 
which has been extensively studied from various perspec-
tives [3–44]. In [3], the authors introduced the concept of 
distributed MIMO radar and investigated the inherent per-
formance limitations of both conventional phased array 
radars and the newly proposed radars. In [4], the problem 
of code design to improve the detection performance of 
multi-static radar in the presence of clutter was studied, 
where the information-theoretic criteria were used as de-
sign metrics. Niu et al. [8] developed the localization and 
tracking algorithms for noncoherent MIMO radar systems, 
in which it was demonstrated that the noncoherent MIMO 
radar can provide a significant performance improvement 
over traditional monostatic phased array radar with high 
range and azimuth resolutions. The work in [11] addressed 
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the problem of sensor scheduling and power allocation in 
a cognitive radar network for multiple-target tracking 
(MTT). Reference [12] extended the system model in [11] 
and presented a performance-driven power allocation 
strategy for Doppler-only target tracking in unmodulated 
continuous wave (UCW) radar network, where the 
Bayesian Cramer-Rao lower bound was derived and 
utilized as an optimization criterion for the optimal power 
allocation scheme. In [14], the authors investigated the 
problem of target tracking in a multistatic radar system 
from the perspective of adaptive waveform selection, in 
which the transmitted waveform parameters were selected 
to minimize the target tracking covariance matrix. Overall, 
the previous studies lay a solid foundation for the problem 
of performance optimization in DRNS, and it should be 
pointed out that the target tracking performance improve-
ment can be obtained with an increase of either the trans-
mitted power or the number of radar nodes. 

Today the notion of low probability of intercept (LPI) 
design is of high importance, which has become an essen-
tial part of military operations in modern electronic warfare. 
In order to achieve LPI performance, it is necessary to 
dynamically manage the radar resources while guarantee-
ing a specified target tracking performance. Technically 
speaking, low transmit power, short dwell time, large re-
visit interval, and ultra-low side lobe antenna will lead to 
better LPI performance. Thus, the problem of LPI based 
radar resource scheduling in traditional monostatic radars 
has been extensively studied from various perspectives 
[20–26][26]. In [24], a novel radar energy control 
algorithm based on an improved interacting multiple model 
particle filtering (IMMPF) was formulated for LPI 
performance enhancement, which controlled the radiation 
time and power of radar according to the target’s range and 
radar cross section (RCS) with a given probability of target 
detection. Later, Zhang et al. [25] developed an optimal 
sensor selection strategy based on passive sensor 
cooperation, and it was shown that the proposed algorithm 
can decrease the radar radiation times with excellent target 
tracking accuracy. Chen et al. extended the results of the 
previous research and presented a radar radiation control 
strategy for multiple aircraft platforms based on time 
difference of arrival (TDOA) cooperation [26], which 
utilized the comparison of covariance and the predefined 
threshold to control the radiation state [27]. Overall 
speaking, the reported works verified that adaptive transmit 
parameters control was an effective technique to improve 
the LPI performance for radar systems. However, the 
previous studies all focused on the monostatic radar. 
Applying this idea to the distributed radar networks will 
face a number of technical problems. Shi et al. addressed 
the LPI optimization strategies in radar networks for the 
first time [28–30], where it has been demonstrated that 
radar network architectures with multiple transmitters and 
receivers can provide remarkable LPI performance 
advantages over traditional monostatic radar system (MRS), 
and has triggered a resurgence of interest in DRNS. The 
authors in [31–33] investigated the sensor scheduling 

algorithm of selecting and assigning sensors dynamically 
for target tracking, which can obtain a good tradeoff 
between the target tracking accuracy and the LPI 
performance. Nevertheless, almost all of those works focus 
on the single parameter optimization. On the basis of the 
research mentioned above, the problem of adaptive 
transmitted power control for target tracking in DRNS 
based on passive sensors cooperation, which has not been 
considered, needs to be investigated. 

This paper aims to investigate the problem of adaptive 
resource scheduling based on TDOA cooperation for target 
tracking by DRNS, where a distributed radar network with 
one dedicated radar netting station and multiple netted 
radar nodes is considered. Specifically, the criterion of the 
proposed LPI optimization strategy is to minimize the total 
transmitted power, which is achieved by optimizing the 
radar revisit interval (which is defined as the period for the 
next update after the measurement at present time) and the 
transmitted power with TDOA cooperation for a given 
target tracking accuracy. 

1.2 Major Contributions 

The major contributions of this work are listed as 
follows: 

(1) Motivated by the target tracking algorithm utilized 
in [15], an improved interacting multiple model (IMM) 
algorithm incorporating extended Kalman filter (EKF) is 
employed for single target tracking, in which the Markov 
transition probability is updated based on the current 
measurements; 

(2) The main contribution of this work lies in the pro-
posed resource scheduling scheme with TDOA cooperation 
for DRNS. The work in [26] concentrates on the maximiza-
tion of the revisit interval based on TDOA cooperation, 
whereas the transmit power control is ignored. On the other 
hand, in [28], only the minimization of total transmitted 
power for radar networks is considered. From the previous 
results in [26], [28], we can conclude that the revisit inter-
val affects the target tracking accuracy, and the transmitted 
power affects the target detection performance during 
tracking process. Therefore, the LPI performance for target 
tracking in DRNS can be improved by jointly optimizing 
the radar revisit interval and the transmitted power for 
a predefined target tracking accuracy, where the fewer 
number of total radiation times and lower transmitted 
power leads to smaller transmission power consumption. In 
this paper, the predictive error covariance matrix is used to 
generate a so-called uncertainty ellipse which describes the 
spatial variance distribution of an efficient target’s state 
estimate at each time index [12]. As such, the predictive 
error covariance matrix is compared with the expected 
error covariance to control the dedicated radar netting 
station under intermittent-working state with TDOA coop-
eration. To be specific, if the expected target tracking accu-
racy is satisfied, the DRNS work in passive mode, and all 
the radars locate and track the target with TDOA method. If 
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the expected target tracking accuracy is not satisfied, the 
DRNS work in active mode, in which the dedicated radar 
netting station transmits radar signals and all the radar 
nodes in DRNS receive and process the echoes that are 
reflected from the target; 

(3) Even though the closed-form expressions for the 
probabilities of detection and false alarm can be obtained, 
the analytical closed-form expression for receiver operating 
characteristics (ROC) is not tractable for distributed radar 
network system [15], [34], [35], we utilize several infor-
mation-theoretic criteria including Bhattacharyya distance, 
Kullback-Leibler (KL) divergence, J-divergence, and mu-
tual information (MI) as the metrics for target detection 
performance in target tracking process, which have previ-
ously been derived in reference [28]. In this paper, the 
resulting optimization problems associated with different 
information-theoretic criteria are cast under a unified 
framework, and the nonlinear programming (NP) based 
genetic algorithm (GA) or else known as NPGA is adopted 
to solve these problems, as the results in [28] suggest that 
NPGA can be extremely effective in solving the highly 
nonconvex and nonlinear optimization problem; 

(4) Furthermore, we built a closed-loop tracker for 
target tracking in DRNS. We employ the improved IMM-
EKF algorithm to obtain an approximate estimate of the 
target state vector, where the initial target position and 
velocity can be obtained by passive sensors and known as 
prior information. Then, the radar network incorporates the 
predictive information in terms of target location and ve-
locity into its task to form the radiation scheme, thereby 
establishing it a closed-loop system. 

This paper is organized as follows. Section 2 de-
scribes the considered radar network system model and 
signal model. Section 3 presents the improved IMM-EKF 
algorithm. In Sec. 4, a novel adaptive resource scheduling 
algorithm for target tracking in DRNS based on TDOA 
cooperation is formulated, and the resulting highly noncon-
vex and nonlinear optimization problems associated with 
different information-theoretic criteria are considered un-
der a unified framework and solved through the nonlinear 
programming based on genetic algorithm (NPGA). The 
numerical simulations are provided in Sec. 5. Finally, con-
clusion remarks are reported in Sec. 6. 

2. Modelling Architecture 

2.1 System Model 
In this paper, we consider a distributed radar network 

consists of one dedicated radar netting station and Nr – 1 
netted radars, which are located at different sites as de-
picted in Fig. 1 [1]. The DRNS can work in two modes, 
i.e., passive mode and active mode. When the DRNS work 
in passive mode, the dedicated radar netting station doesn’t 
transmit any signals, and all the radar nodes in DRNS 
locate and track the target by receiving  the signal s(t) ra-
diated from the target. Herein, it is supposed that the netted 
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Fig. 1.  Distributed radar network systems (Shi et al. in [37]). 

radars in DRNS can receive the signals radiated from the 
target all the time, so that the passive TDOA method [36] 
can be employed to locate and track the target. 

When the DRNS work in active mode, the dedicated 
radar netting station transmits radar signals and all the 
radars in DRNS can receive and process the echoes that are 
reflected from the target. The DRNS can be broken into 
1  Nr transmitter-receiver pairs each with a bistatic com-
ponent contributing to the total signal-to-noise ratio (SNR) 
of the radar network. 

We assume that the DRNS have a common precise 
knowledge of space and time. The total SNR in DRNS can 
be obtained by aggregating the SNR of each transmit-re-
ceive pair as follows [2]: 
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where Pt is the transmitter power of the dedicated radar 
netting station, Gt is the transmit antenna gain, Gri is the ith 
receive antenna gain, ti represents the radar cross section 
(RCS) of the target for the dedicated radar netting station 
and the ith receiver,  represents the transmitted wave-
length, k and Toi are Boltzmann’s constant and the receiv-
ing system noise temperature at the ith receiver respec-
tively, Br denotes the bandwidth of the matched filter for 
the transmitted waveform, Fri denotes the noise factor for 
the ith receiver, Li denotes the system loss between the 
dedicated radar netting station and the ith receiver, Rt and 
Rri are the distance from the dedicated radar netting station 
to the target and the distance from the target to the ith re-
ceiver respectively. 

2.2 Signal Model 

Consider the ith bistatic channel between the dedi-
cated radar netting station and the ith receiver. Based on 
the definitions in [44], [45], the path gain contains the 
target reflection coefficient gi and the propagation loss 
factor pi. Let gi denote the target reflection gain between 
the dedicated radar netting station and the ith receiver. It is 
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assumed that the target is comprised of a large number of 
independent and identically distributed (i.i.d.) random 
scatterers (i.e. Swerling-I model and Swerling-II model). 
Based on the central limit theorem, we can model gi’s as 
i.i.d. zero-mean complex Gaussian random variables, that 
is, gi  CN(0,2

g), where CN(,2) denotes a Gaussian 
distribution with mean  and variance 2. The propagation 
loss factor pi is a function of antenna gain and waveform 
propagation distance, which can be expressed as [28], [44], 
[45]: 

 t r

t r
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i

i

G G
p

R R
     (2) 

In this paper, when the DRNS work in active mode, 
we suppose that the transmitted waveform of the dedicated 
radar netting station is  tP x t , and then the received 

signal at the ith receiver from a single target can be written 
as: 

      ti i i i iy t p g P x t n t      (3) 

where   2
d 1x t t  , i represents the time delay, ni(t) 

denotes the noise at receiver i. Without loss of generality 
and to simplify the analysis, it is assumed that the target is 
static over the observation period, thus no Doppler effect is 
considered. At the ith receiver, the received signal is 
matched filtered by time response x*(–t), and the output 
signal can be expressed as [42]: 
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where       * di in t n x t     . 

The discrete-time signal for the ith receiver can be 
described as: 

    tii i i i ir y p g P    (5) 

where ri is the output of the matched filter at the ith 
receiver sampled at i, i = ñi(i), and i  CN(0,2

).  

With all the received signals, the target detection for 
DRNS leads to a binary hypothesis testing problem, with 
H1 corresponding to the target presence hypothesis and H0 
corresponding to the null hypothesis: 
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where 1  i  Nr. The target detection problem can be for-
mulated and solved by comparing the likelihood ratio test 
(LRT) function as follows [45]: 
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where  denotes a certain detection threshold for the 
hypothesis testing for the radar receivers. 

3. Improved IMM-EKF Algorithm 

3.1 Target Dynamic Model 

Consider a two-dimensional target tracking scenario. 
The target state is given by X(k) = [x(k), ẋ(k), y(k), ẏ(k)]T, 
where [x(k), y(k)] denotes the target position, [ẋ(k), ẏ(k)] 
denotes the target velocity, and the superscript T represents 
matrix transpose. The target dynamic model can be de-
scribed as: 

      1 1k k k   X FX N    (8) 

where F is the transition matrix. The term N(k – 1) in (8) 
represents the process noise of target motion, and is sup-
posed to be an additive Gaussian noise vector with a covar-
iance Q(k – 1) = E[N(k – 1) N(k – 1)T] [15], where E[•] 
denotes the mathematical expectation. 

3.2 Estimation Model 

For radar application, the target estimation model 
usually consists of target’s distance and azimuth angle, 
which are thus nonlinear. Then, the nonlinear estimation 
equation can be given by: 

       ,k k k k Z h X W    (9) 

where Z(k) is the estimation vector at time k, W(k) stands 
for the estimation error, and h(•) is a vector of nonlinear 
transformation function. 

It is known to all that different mode has different 
observation vector. In this paper, one dedicated radar net-
ting station and (Nr – 1) netted radar nodes are considered 
for single target tracking, where the passive mode can only 
provide the angle measurements including the azimuth 
angle and the elevation angle, while the active mode can 
provide both range and angle measurements for target 
tracking. Herein, for the sake of simplicity, we consider 
a two-dimensional target tracking scenario, where the tar-
get’s elevation angle is assumed to be zero. In our case, Nr 
netted radars are employed to track a single target with 
TDOA method [36]. In order to locate a 2D target, the 
TDOA system should comprise three stations at least. The 
measurements received from two slave stations must be 
sent to the master station, where the time difference and the 
target position estimate are computed. 

It is assumed that the positions of the master and slave 
stations are (x0, y0) and (xi, yi), i = 1, 2, respectively. The 
TDOA equations can be given by: 
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where r0(k) denotes the range between the target and the 
master station, ri(k) denotes the range between the target 
and the ith slave station. Then, we can have that: 

        0 0i i ir k r k r k c t k      (11) 

where c represents the speed of electromagnetic transmis-
sion. ti0(k) stands for the corresponding time difference of 
ri(k): 
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where t0(k) and ti(k), i = 1, 2, are the time when the target’s 
radiated signal is received by the master and slave stations, 
respectively. The observation vector of the passive mode 
can be described as: 
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where WPM(k) is the observation error with covariance 
NPM(k), and hPM(•) represents the nonlinear transformation 
from the target state vector of target position in Cartesian 
coordinates to the observation vector of time difference. 

Moreover, the observation vector of the active mode 
includes range measurement rAM(k) and angle measurement 
AM(k), which can be written as: 
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where WAM(k) represents the observation error with covari-
ance NAM(k), and hAM(•) is the nonlinear transformation 
from the target state vector of target position in Cartesian 
coordinates to the observation vector of range and azimuth 
angle. 

3.3 IMM-EKF Algorithm 

3.3.1 Extended Kalman Filter 

The Kalman filter (KF) is widely used in target track-
ing [38], [39]. However, the EKF and the unscented Kal-
man filter (UKF) [40] are more commonly employed, 
which is due to the fact that they can deal better with the 
nonlinearity between the measurement model and the target 
dynamic model, though they require much more expensive 
computational costs. The UKF has been demonstrated that 
it can provide the best tracking performance, but its com-
putational cost is the highest.  

Therefore, the standard EKF is employed for single 
target tracking problem in this paper because it can achieve 
the best tradeoff between its tracking performance and its 
computational cost [15]. The equations of EKF are pro-
vided as follows [15]: 

Prediction: 

      | 1 1 | 1 ,k k k k   X FX    (15) 

      T| 1 1 | 1 ,k k k k k    P FP F Q   (16) 

          T| 1 .X Xk k k k k k  S h P h R  (17) 

Update: 

        T 1| 1 ,Xk k k k k K P h S   (18) 

        | | 1 ,Xk k k k k k    P I K h P   (19) 

         , | 1 ,k k k k k  Z Z h X   (20) 

           | | 1 ,k k k k k k  X X K Z   (21) 

where hX(k) is a Jacobian of h(X(k)) evaluated at 
  | 1k k X X  [26]: 
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To be specific, when the DRNS work in active mode, 
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where 

    2 2| 1 | 1 .r x k k y k k      (24) 

While when the DRNS work in passive mode, 
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  (25) 
where 
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 (26) 

3.3.2 Interacting Multiple Model 

Herein, we employ the IMM method which incorpo-
rates three standard EKFs, where we consider three target 
dynamic models: 1) a constant velocity model, 2) a turn 
model with a positive turn rate, and 3) a turn model with 
a negative turn rate. The detailed descriptions of all the 
three dynamic models are given in Sec. 5. 
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The crucial feature of the resource management algo-
rithm in radar network is that it must be predictive, where 
the predictive error covariance matrix enables us to make 
decisions in advance based on current knowledge. Given 
the predicted target state X̂i(k – 1), model probability 
ui(k│k – 1), and error covariance matrix Pi(k│k – 1) at time 
index k – 1, we can calculate the predictive error covari-
ance matrix  IMM

pre | 1P k k  . Hence, the combined target 

state is given by: 
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The predictive error covariance matrix can be computed as: 
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It can be observed from (28) that there exists a restric-
tive relationship between the predictive error matrix and 
the revisit interval. To be specific, increasing the revisit 
interval leads to enlarging the trace of  IMM

pre | 1P k k  , 

which results in the degradation of target tracking perfor-
mance. Thus, a new measurement needs to be scheduled as 
soon as the tracking accuracy degrades to a specific level. 

3.4 Updated Markov Transmission Probabil-
ity with Current Measurements 

In the previous standard IMM algorithm, the interact-
ing process of inputs is a Markov process. The model 
transition governed by a first-order homogeneous Markov 
chain can be denoted as: 

     | 1 , ,j i ijP M k m M k m p i j        (29) 

where pij is the Markov transition probability from model 
mi at time index k – 1 to the model mj at time index k. In 
standard IMM algorithm, the interacting process is decided 
by the Markov transition probability matrix Pt, which is 
predetermined based on prior knowledge and remains the 
same in the target tracking process. However, because of 
target maneuver and distortion of the prior knowledge, the 
predefined Markov transition probability matrix cannot 
actually reflect the model transition of target motion, which 
results in target tracking error. For that reason, it is suffi-
cient for us to utilize the current measurements to update 
the Markov transition probability matrix Pt. 

Herein, it is supposed that the probability of model j 
at time index k – 1 is u j(k – 1), and the probability of 
model j at time index k is u j(k). The difference of u j(k), 
and u j(k – 1) characterizes the change of the degree of 

match with the target motion, which can be utilized to 
modify the Markov transition probability matrix Pt [41], 
[43]. Thus, the change rate of model probability can be 
expressed as: 

    10 ,
j kj k i     (30) 

where 

       3
1j j jk u k u k      .  (31) 

It can be seen from (30) that when the probability of model 
j increases,  j(k) > 1; otherwise,  j(k) < 1. We assume that 
the Markov transition probability at time index k – 1 is 
pij(k – 1), then  j(k) is used to modify the Markov transi-
tion probability as follows: 

      ' 1 ,j
ij ijp k k p k i j       (32) 

which is different from the traditional EKF algorithm. It 
can be implied that the Markov transition probability can 
be increased with an increase in the parameter  j(k), which 
reflects the real-time target motion. Furthermore, the nor-
malized Markov transition probability can be calculated as: 
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  (34) 

According to (33), we know that the modified Mar-
kov transition probability is increased as u j(k) increases, 
which effectively avoids the problem of prior determina-
tion of the Markov transition probability matrix in standard 
IMM algorithm. The flow chart of the improved IMM-EKF 
algorithm with modified Markov transition probability is 
given in Fig. 2 [41], [43]. 

4. Problem Formulation 
In this section, the LPI optimization strategy can be 

mathematically formulated as the problem of minimizing 
the total transmitted power subject to a predefined target 
tracking performance. With the improved IMM-EKF algo-
rithm for target tracking, we are then in a position to design 
and minimize the total transmitted power in order to 
achieve effective LPI performance improvement in DRNS. 
It is introduced in [5] that the analytical closed-form expres-
sion for ROC does not exist. Thus, we used the informa-
tion-theoretic criteria, namely, Bhattacharyya distance, KL 
divergence, J-divergence, and MI as the metrics for detec-
tion performance in target tracking process. In what fol-
lows, the corresponding LPI performance optimization 
based on TDOA cooperation associated with different in-
formation-theoretic  criteria are cast  under a unified frame- 
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Fig. 2. Flow chart of the improved IMM-EKF algorithm (Guo 

et al. in [41]). 

work and can be solved conveniently through NPGA. The 
general LPI optimization strategy is detailed as follows. 

4.1 Radiation Control 

In this paper, the improved IMM-EKF algorithm is 
adopted to track a single target. Actually, the term 

 IMM
pre | 1k k P  in (28) implies the feedback information 

from the tracker to the DRNS, based on which the adaptive 
resource scheduling strategy can be implemented. Herein, 
we can utilize (28) to generate a so-called uncertainty 
ellipse, which describes the spatial variance distribution of 
an efficient target estimate [12]. 

Moreover, the expected covariance matrix is set to be 
·Pd (0 <  < +), which denotes the lower bound on the 
error covariance of the estimation of the target position and 
velocity. The scalar  is defined as radar radiation control 
factor (RRCF), and it can be used to control target tracking 
accuracy. 

Generally speaking, the uncertainty ellipse of 
 IMM

pre | 1k k P  would be contained in the uncertainty 

ellipse of ·Pd if the expected target tracking accuracy is 
satisfied. Hence, it is sufficient for us to use 

 IMM
d pre | 1k k    P P  as a criterion for the radar radiation 

control strategy. In other words, we can judge whether 
 IMM

pre | 1k k P  meets the requirement of ·Pd according to 

whether  IMM
d pre | 1k k    P P  is positive semi-definite or 

not. The DNRS will work in active mode only when the 
expected target tracking accuracy is not satisfied, which 
means that the dedicated radar netting station will be used 
to radiate radar signals at time slot k only when 

 IMM
pre | 1k k P  meets the following constraint: 

  IMM
d pre | 1 .k k    P P 0  (35) 

To be specific, if  IMM
d pre | 1 ,k k     P P 0  the 

expected target tracking accuracy is satisfied. The DRNS 
work in passive mode and all the netted radars locate and 
track the target with TDOA method. While if 

 IMM
d pre | 1 ,k k     P P 0  the expected target tracking 

accuracy is not satisfied, and the DRNS work in active 
mode. The dedicated radar netting station transmits radar 
signals and all the radars in DRNS can receive and process 
the echoes that are reflected from the target. On the other 
hand, it is worth to point out that in the covariance control 
method, the uncertainty ellipse of the predictive error 
covariance matrix  IMM

pre | 1k k P  may be not contained in 

the uncertainty ellipse of the expected error covariance 
matrix ·Pd even though the trace of  IMM

pre | 1k k P  is 

smaller than that of ·Pd. 

4.2 Adaptive Transmit Power Control 

4.2.1 Bhattacharyya Distance Criterion 

Bhattacharyya distance B(p0, p1) measures the dis-
tance between two PDFs p0 and p1 [5]. It should be noted 
that the Bhattacharyya distance provides an upper bound 
on the probability of false alarm pfa and at the same time 
yields a lower bound on the probability of detection pd. 

Consider two multivariate Gaussian distributions p0 
and p1, p0  CN(0,0) and p1  CN(0,1), the Bhattacharyya 
distance B(p0, p1) can be expressed as: 

  
 

   
0 1

0 1

0 1

det 0.5
, log .

det det
B p p

        
   

   (36) 

Let B[f(r│H0), f(r│H1)] represent the Bhattacharyya dis-
tance between H0 and H1, where f(r│H0) and f(r│H1) are 
the PDFs of r under hypotheses H0 and H1, respectively. 
For the binary hypothesis testing problem, we can have 
that: 
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 (37) 

where         12 2 2
t g θ2i ik P k p k  


 . 

It is discussed in [5] that maximization of the 
Bhattacharyya distance minimizes the upper bound on pfa 
while it maximizes the lower bound on pd. As expressed in 
(37), the Bhattacharyya distance derived here can be uti-
lized to evaluate the target detection performance in DRNS 
as a function of different parameters, such as the transmit-
ting power and the number of receivers in the system. The 
greater the Bhattacharyya distance between the two distri-
butions of the binary hypothesis testing problem, the better 
the capability of DRNS to track the target [28], which 
would make the system more vulnerable in modern elec-
tronic warfare. 
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Therefore, the Bhattacharyya distance can provide 
guidance to the problem of adaptive resource scheduling 
for target tracking in DRNS. According to (28) and (37), 
one can see that the target tracking accuracy is related to 
several parameters, including signal waveforms, revisited 
interval, and transmitted power. The adaptable parameters 
considered in this paper are the revisited interval and the 
transmitted power. For a predetermined target tracking 
performance at each time index, the aim of our work is to 
optimize the radar revisit interval and the transmitted 
power, which can result in the minimization of the total 
transmitted power, subject to the target tracking 
performance constraint. Eventually, the resulting LPI 
optimization problem can be formulated as follows: 
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  (38) 

where NS is the total times of radar radiation, Bth is the 
Bhattacharyya distance threshold for target detection per-
formance, and the transmitting power of the dedicated 
radar netting station at time index k is constrained by 
a maximum value maxP  and a minimum value minP . 

4.2.2 Kullback-Leibler Divergence Criterion 

The KL-divergence D(p0 ║ p1) is another metric to 
measure the distance between two PDFs p0 and p1. 
Consider a binary hypothesis testing problem with f(r│H0) 
and f(r│H1). It is stated in the Stein Lemma that for any 
fixed value of pfa, 

          0 1 d

1
| || | lim log 1 ,
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r r   (39) 

which indicates that for any fixed pfa, the maximization of 
the KL-divergence leads to asymptotic maximization of pd. 
From (39), we can observe that for any fixed pfa, the maxi-
mization of KL-divergence metric D[f(r│H0) ║ f(r│H1)] 
leads to an asymptotic maximization of pd. In addition, we 
can obtain that: 

      0 1 0| || | E log |D f H f H H        r r   (40) 

where   is the likelihood ratio defined as: 
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Using (39) and (40), the KL-divergence associated with (6) 
can be expressed as: 
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Similarly to problem (38), the KL-divergence based 
LPI optimization can be formulated as: 
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where Dth is the KL-divergence threshold for target detec-
tion performance. 

4.2.3 J-Divergence Criterion 

The J-divergence metric J(p0, p1) is another measure 
of the distance between two PDFs p0 and p1. It is defined as 
follows: 

      0 1 0 1 1 0, || || .J p p D p p D p p   (44) 

The Stein Lemma introduces that in a binary 
hypothesis testing problem with with f(r│H0) and f(r│H1), 
and for any fixed pfa, we can obtain: 

      1 0 fa

1
| || | lim log

N
D f H f H p

N

       
r r .  (45) 

For the binary hypothesis testing problem in (6) with 
f(r│H0) and f(r│H1), we can write: 
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  (46) 
Using (46) along with the similar derivations as in the 

case of KL-divergence, the J-divergence associated with 
(6) can be given by: 
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Consequently, the corresponding J-divergence based 
LPI optimization problem can be expressed as: 



242 JING TAN, CHENGUANG SHI, JIANJIANG ZHOU, NOVEL POWER CONTROL SCHEME FOR TARGET TRACKING IN RADAR … 

 

 

 
 

 
 

 

t,
1

DRNS th

min max

IMM
d pre

min ,

s.t. : ,

,

| 1

S

t S

N

P k N
k

t

P k

J k J

P P k P

k k





  


  
   
     



P P 0

   (48) 

where Jth is the J-divergence threshold for target detection 
performance. 

4.2.4 Mutual Information Criterion 

MI is another metric that has been widely used for ra-
dar transmit waveform design and optimization. The MI 
between the backscatter signal and the estimated target 
response statistically depends on the target features, which 
is often utilized as a design criterion [28]. It should be 
noted that the larger MI leads to target tracking perfor-
mance improvements. The MI metric associated with (6) 
can be obtained as: 
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Thus, the MI criterion based LPI optimization 
problem can be summarized as: 
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where Ith is the MI threshold for target detection 
performance. 

4.2.5 Unified Framework Based on NPGA 

Based on the above derivations, we can cast the vari-
ous information-theoretic criteria based LPI optimization 
problems under a unified optimization framework. Thus, 
we formulate the following general form of the optimiza-
tion problems in (38), (43), (48), and (50): 
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where  DRNS DRNS DRNS DRNS DRNS, , ,B D J I   and th  is the 

corresponding threshold for target detection. 

In this paper, the optimal solutions to the unified non-
convex, nonlinear, and constrained optimization problem  

(51) can easily be obtained with NPGA, which has a good 
performance on the convergence speed, and it can improve 
the searching performance of ordinary genetic algorithm 
[28]. The NPGA is extremely effective in solving multi-
dimensional optimization problems with non-convex and 
nonlinear constraints on the variables. Therefore, the opti-
mal solutions can be calculated efficiently, such that the 
LPI techniques can be used in real-time systems. In Fig. 3, 
the flow chart of NPGA is provided, which can help us 
have an insight into this method. 

Overall speaking, the closed-loop target tracking 
strategy in DRNS can be summarized as follows. Firstly, 
the target state at the current time index is obtained by the 
improved IMM-EKF algorithm. Then, the predictive error 
covariance matrix is calculated, based on which the radar 
radiation control scheme can be implemented. Finally, the 
adaptive transmitted power control result is sent back  
to guide  the  radiation  scheme at the  next time index [12], 

 

Fig. 3. Flow chart of NPGA procedure (Shi et al. in [28], 
[29]). 

 

 Step 1: Initialization Phase: Given the target state estimate 
X(k – 1) and the corresponding error covariance matrix 
P(k – 1) at time (k – 1). 

 Step 2: Prediction Phase: Determine the radar radiation 
time when the target tracking accuracy in the predicted 
state has degraded to the given level: 
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 Step 3: LPI Optimization Phase: For DRNS, obtain the 
optimal transmitted power Pt(k) by solving the following 
LPI optimization problem: 
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 Step 4: Measurement Phase: Make the measurement with 
the optimal parameters, update the target state X̂IMM(k│k) 
and the corresponding error covariance matrix PIMM(k│k) 
by employing the improved IMM-EKF. 

Tab. 1. General steps of the proposed algorithm. 
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Radar                                  Locations 
Radar netting station          [0, 0] km 
Radar1                                [8, 6] km 
Radar2                                [–8, 6] km 
Radar3                                [0, 10] km 

Tab. 2. Radar netting station and netted radars locations. 

thereby rendering it a closed-loop system. The general 
steps of the proposed algorithm are provided in Tab. 1, 
which is a combination of various proposed techniques. 

So far, we have completed the formulation of the 
TDOA cooperation based adaptive resource scheduling 
strategy for target tracking in DRNS. In what follows, 
some numerical simulations are dedicated to show the 
effectiveness of our presented method. 

5. Numerical Results 
In the sequel, numerical simulation results are dedi-

cated to verify the accuracy of the theoretical derivations as 
well as to demonstrate the enhancement of the LPI perfor-
mance brought by our proposed adaptive resource schedul-
ing strategy. A distributed radar network with one dedi-
cated radar netting station and three spatially distributed 
netted radars is considered. The locations of the dedicated 
radar netting station and netted radars are shown in Tab. 2. 

Herein, we set the system parameters Gt = 30 dB, 
Gri = 30 dB, (i = 1,…, Nr), g

2
 = 1, and 

2
 = 10–10. The 

lower and upper bound of the dedicated radar netting sta-
tion’s transmitted power are set to be P̅min= 0 and 
P̅max= 24 kW. The threshold of target tracking performance 
Ωth can be calculated in the condition that the dedicated 
radar netting station’s transmitted power is P̅max= 24 kW at 
a distance of 267 km between the dedicated radar netting 
station and the target, which is the marginal value of the 
basic performance requirement for target detection in target 
tracking process. 

The improved IMM-EKF algorithm is employed in 
the simulation with three target dynamic models: 1) a con-
stant velocity model FCV, 2) a coordinate turn model FCT 
with positive turn rate ω = /180, and 3) a coordinate turn 
model FCT with negative turn rate ω = –/180. 
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where T is the time interval between successive frames. For 
all the models, the covariance matrix of the process noise is 
set to be: 
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where 2= 0.042. The covariance matrix of the measure-
ment error: 
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where  r =0.1 km,  β = 0.001°, and  TDOA = 3  10–3 km 
[15]. 

The initial model probabilities are 0.95 for the target 
to be in the constant velocity model, 0.025 for the target to 
be in the coordinate turn model with positive turn rate, and 
0.025 for the target to be in the coordinate turn model with 
negative turn rate. The initial model transition probability 
matrix is set to be: 

 t
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0.01 0.01 0.98

 
   
  

P    (57) 

The simulated target trajectory is illustrated in Fig. 4. 
The initial position and velocity of the simulated target are 
[100, 80] km and [0.4, 0.3] km/s, respectively. The target 
takes a right turn between 60 s and 100 s, and takes a left 
turn between 140 s and 200 s. The time interval between 
successive frames is T = 2 s, and a sequence of 100 frames 
are utilized in the simulation.  

To better show the optimality of our proposed strat-
egy, Fig. 5 and Fig. 6 illustrate the root mean square error 
(RMSE) and the average root mean square error (ARMSE) 
of the whole target tracking process, respectively. The 
RMSE at the kth tracking interval can be calculated as: 
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where NMC is the number of Monte-Carlo trials, and 
     | , |n nx k k y k k 
   is the target state estimate at the nth 

trial. The ARMSE is defined as follows: 
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Fig. 4. Simulated target trajectory. 

  
T

1T

1 N

k

ARMSE RMSE k
N 

     (59) 

where NT is the total frames in the simulation.  

In Fig. 5 and Fig. 6, we compare the target tracking 
performance of the proposed algorithm and the covariance 
control algorithm averaged over 1000 Monte-Carlo trials. 
Besides, the proposed algorithm in [28] without TDOA 
cooperation is also included in this simulation, where the 
dedicated radar netting station is scheduled to radiate 
power in each time index. Obviously, the target tracking 
performance of the algorithm in [28] is the best. However, 
as shown later, the total times of radar radiation by em-
ploying the algorithm proposed in [28] is the largest, which 
in turn has the worst LPI performance. The proposed 
algorithm can obtain the best tradeoff between the target 
tracking accuracy and the total times of radar radiation. It 
can be seen from Fig. 5 that our proposed algorithm is 
strictly smaller than that of the covariance control algo-
rithm.  

Moreover, we can see from Fig. 5 and Fig. 6 that as 
the RRCF increases from  = 1 to  = 3 the target tracking 
performance degrades as expected. This is because that the 
expected error covariance matrix ·Pd is increased with the 
increase of , which demonstrates that there exists a re-
strictive relationship between the RRCF and the target 
tracking accuracy.  

Overall, the covariance control algorithm does not 
perform well compared to our proposed algorithm. This is 
due to the fact that the covariance control algorithm aims to 
minimize the trace of the predictive error covariance 
matrix, which is not a good representative metric for the 
target tracking accuracy. 

In this simulation, we examine the radar real-time 
radiation state of the proposed algorithm with different 
RRCF. From Fig. 7, it can be observed that the total times 
of radar radiation is decreased as the RRCF increases, and 
the corresponding target tracking accuracy is also 
degraded. Furthermore, we can see in Fig. 8 that the total 
times of radar radiation utilizing the covariance control 
algorithm is the smallest, but it exhibits the worst target 
tracking  performance.  As  aforementioned,  the  proposed 

 
(a) 

 
(b) 

 
(c) 

Fig. 5. Target tracking RMSE in each case. (a) Case 1:  = 1. 
(b) Case 2:  = 2. (c) Case 3:  = 3. 

 

Fig. 6. Target tracking performance of different algorithms. 
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Fig. 7. Radar real-time radiation state in each case. (a) Case 1: 
 = 1. (b) Case 2:  = 2. (c) Case 3:  = 3. 

 

Fig. 8. The number of total radiation times for different 
algorithms. 

 
(a) 

 
(b) 

 
(c) 

Fig. 9. The total transmitted power at each time index. (a) 
Case 1:  = 1. (b) Case 2:  = 2. (c) Case 3:  = 3. 

 
Fig. 10. The total transmitted power of different algorithms. 
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algorithm can obtain the best tradeoff between the target 
tracking accuracy and the total times of radar radiation. 

To obtain the optimal transmitted power in DRNS, we 
employ NPGA to solve the optimization problem [28], 
where the population size is set to be 100, the crossover 
probability is 0.6, and the mutation probability is 0.01. The 
population evolves 10 generations. The parameters are 
essentially needed to solve the resulting optimization prob-
lem by utilizing NPGA. For more details refer to [28]. 

In order to reveal the effects of RRCF on the total 
transmitted power results, Figure 9 depicts the total trans-
mitted power results at each time index utilizing our pro-
posed four information-theoretic criteria as RRCF in-
creases. For all the cases, one can see that as RRCF 
increases, the total transmitted power is reduced. As afore-
mentioned, this is due to the fact that the total times of 
radar radiation decreases with the increase of the expected 
error covariance matrix. 

Figure 10 shows the total transmitted power of differ-
ent algorithms. We can see that the total transmitted power 
utilizing our proposed adaptive resource scheduling algo-
rithm with the information-theoretic criteria in DRNS is 
significantly smaller than those of other algorithms, which 
further shows the remarkable LPI improvement by exploit-
ing our presented strategy in DRNS. The proposed algo-
rithm in DRNS transmits only 17%–21% of the total trans-
mitted power by the proposed algorithm in [28]. Besides, 
the comparison of the total transmitted power between the 
DRNS and the MRS (the dedicated radar netting station) is 
also plotted in Fig. 10, where only the MI criterion based 
adaptive resource scheduling strategy is employed in MRS 
for brevity. As expected, using the SNR contributions from 
all transmitter-receiver pairs, the DRNS can provide 
a better LPI performance. 

6. Conclusions 
In this paper, the problem of adaptive resource sched-

uling based on TDOA cooperation in DRNS is investi-
gated, which improves the LPI performance in target track-
ing by optimizing the radar revisit interval and the trans-
mitted power for a predetermined tracking performance. 
The NPGA is employed to solve the resulting nonconvex 
and nonlinear optimization problems. Simulation results 
are provided to demonstrate that, compared with other 
algorithms, a significant improvement of the LPI perfor-
mance can be achieved through our proposed strategy. 
From a practical point of view, in the future, the proposed 
algorithm can be implemented in satellite communications 
as well as a system of using reconfigurable antennas and 
other emerging wireless technologies for finding more 
accurately targets [46–49]. In addition, the findings in this 
paper can be implemented in other scientific fields using 
the tracking technique to find a better cutoff point even 
using ROC analysis [50]. Future work will also concentrate 
on the problem of the optimal radar sensor scheduling to 
improve the LPI performance in DRNS. 
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