DOI QR코드

DOI QR Code

Probabilistic vibration and lifetime analysis of regenerated turbomachinery blades

  • Berger, Ricarda (Leibniz Universitat Hannover, Institute of Structural Analysis) ;
  • Rogge, Timo (Leibniz Universitat Hannover, Institute of Structural Analysis) ;
  • Jansen, Eelco (Leibniz Universitat Hannover, Institute of Structural Analysis) ;
  • Rolfes, Raimund (Leibniz Universitat Hannover, Institute of Structural Analysis)
  • Received : 2016.06.15
  • Accepted : 2016.08.12
  • Published : 2016.10.25

Abstract

Variances in turbomachinery blades caused by manufacturing, operation or regeneration can result in modified structural behavior. In this work, the scatter of geometrical and material properties of a turbine blade and its influence on structure performance is discussed. In particular, the vibration characteristics and the lifetime of a turbine blade are evaluated. Geometrical variances of the surface of the blades are described using the principal component analysis. The scatter in material properties is considered by 16 varying material parameters. Maximum vibration amplitudes and the number of load cycles the turbine blade can withstand are analyzed by finite element simulations incorporating probabilistic principles. The probabilistic simulations demonstrate that both geometrical and material variances have a significant influence on the scatter of vibration amplitude and lifetime. Dependencies are quantified and correlations between varied input parameters and the structural performance of the blade are detected.

Keywords

References

  1. Aschenbruck, J., Adamczuk, R., and Seume, J.R. (2014), "Recent progress in turbine blade and compressor blisk regeneration", Proceedings of the 3rd International Conference on Through-life Engineering Services, Cranfield, England, November.
  2. Aschenbruck, J., Meinzer, C.E. and Seume, J. (2013b), "Influence of regeneration-induced variances of stator vanes on the vibration behaviour of rotor blades in axial turbines", Proceedings of the 10th European Conference on Turbomachinery Fluid dynamics & Thermodynamics, Lappeenranta, Finland, April.
  3. Aschenbruck, J., Meinzer, C.E., Pohle, L., Panning-von Scheidt, L. and Seume, J. (2013a), "Regenerationinduced forced response in axial turbines", Proceedings of the ASME Turbo Expo 2013, San Antonio, Texas, USA, June.
  4. Booysen, C., Heyns, P.S., Hindley, M.P. and Scheepers, R. (2015), "Fatigue life assessment of a low pressure steam turbine blade during transient resonant conditions using a probabilistic approach", Int. J. Fatig., 73, 17-26. https://doi.org/10.1016/j.ijfatigue.2014.11.007
  5. Brenner, P. (1956), "Statische und dynamische Festigkeitseigenschaften hochfester Aluminiumlegierungen", Aluminium, 32, 756-768
  6. Enright, M.P., Hudak, S.J. and, McClung, R.C. (2006), "Application of Probabilistic probabilistic Fracture fracture Mechanics mechanics to Prognosis prognosis of Aircraft aircraft Engine engine components", AIAA J., 44(2), 311-316. https://doi.org/10.2514/1.13142
  7. Fei, C., Tang, W., Bai, G. and Ma, S. (2015), "Dynamic probabilistic design for blade deformation with SVM-ERSM", Aircraft Eng. Aerosp. Tech., 87(4), 312-321. https://doi.org/10.1108/AEAT-07-2013-0125
  8. Garzon, V.E. and Darmofal, D.L. (2003), "Impact of geometric variability on axial compressor performance", Proceeding of the ASME Turbo Expo 2003, Atlanta, Georgia, USA, January.
  9. GOM (2016), available online at: http://www.gom.com (accessed 3 August 2016).
  10. Heinze K., Meyer M., Scharfenstein J., Voigt, M. and Vogeler, K. (2013), "A parametric model for probabilistic analysis of turbine blades considering real geometric effects", CEAS Aeronaut. J., 5(1), 41-51. https://doi.org/10.1007/s13272-013-0088-6
  11. Heinze, K. (2015), "Eine Methode fur probabilistische Untersuchungen zum Einfluss von Fertigungsstreuungen auf die hochzyklische Ermudung von Verdichterschaufeln", Ph.D. Dissertation, TU Dresden, Dresden.
  12. Hohenstein, S., Aschenbruck, J. and Seume, J. (2013), "Einfluss betriebs- und regenerationsbedingter Varianzen von Turbinenschaufeln", Int. J. Elect. Heat Gen. VGB Power Tech., 11, 51-58.
  13. Holl, M., Rogge, T., Loehnert, S., Wriggers, P. and Rolfes, R. (2014), "3D multiscale crack propagation using the XFEM applied to a gas turbine blade", Comput. Mech., 53(1), 173-188. https://doi.org/10.1007/s00466-013-0900-5
  14. Hou, J. and Wicks, B.J. (2002), "Root flexibility and untwist effects on vibration characteristics of a gas turbine blade", Defence Science and Technology Organization Victoria (Australia) Platform Science Lab, No. DSTO-RR-0250.
  15. Hou, J., Wicks, B.J. and Antoniou, R.A. (2002), "An investigation of fatigue failures of turbine blades in a gas turbine engine by mechanical analysis", Eng. Fail. Anal., 9(2), 201-211. https://doi.org/10.1016/S1350-6307(01)00005-X
  16. Jolliffe, I. (2002), Principal Component Analysis, 2th Edition, Springer, New York, NY, USA.
  17. Lange, A. (2016), "Performanceuntersuchung eines Hochdruckverdichters unter Berucksichtigung geometrischer Variabilitat", Ph.D. Dissertation, TU Dresden, Dresden.
  18. Lange, A., Voigt, M., Vogeler, K. and Johann, E. (2012), "Principal component analysis on 3D scanned compressor blades for probabilistic CFD simulation", 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference Honolulu, Hawaii.
  19. Lange, A., Voigt, M., Vogeler, K., Schrapp, H., Johann, E. and Gummer, V. (2012), "Impact of manufacturing variability on multi-stage high-pressure compressor performance", Proceedings of the ASME Turbo Expo 2012, Copenhagen, Denmark.
  20. Miner, M.A. (1945), "Cumulative damage in fatigue", J. Appl. Mech., 12(3), 159-164.
  21. Rao, J.S. (2000), Turbine blade life estimation, 1st Edition, Alpha Science International, Pangbourne, UK.
  22. Reyhani, M.C., Alizadeh, M., Fathi, A. and Khaledi, H. (2013), "Turbine blade temperature calculation and life estimation-a sensitivity analysis", Propuls. Power Res., 2(2), 148-161. https://doi.org/10.1016/j.jppr.2013.04.004
  23. Rogge, T. and Rolfes, R. (2012), "Stochastische Untersuchungen regenerationsbedingter Imperfektionen einer Turbinenschaufel-Modellierung des deterministischen Modells zur effizienten Berechnung des Schwingungs- und Festigkeitsverhaltens", Proceedings of 5 Dresdener-Probabilistik-Workshop, Dresden, Germany, October.
  24. Sabour, M.H. and Bhat, R.B. (2008), "Lifetime prediction in creep-fatigue environment", Mater. Sc. Poland, 26(3), 563-584.
  25. Spearman, C. (1904), "The proof and measurement of association between two things", Am. J. Psychol., 15(1), 72-101. https://doi.org/10.2307/1412159
  26. ThyssenKrupp (2016), "Data sheet: EN AW-7022", available online at: http://www.thyssenkrupp.ch/documents/Al_Platten_7022.1.pdf (accessed 3 August 2016).
  27. Traupel, W. (2001), Thermische Turbomaschinen II, 4th Edition, Springer, Berlin, Germany.
  28. Vogeler, K. and Voigt, M. (2015), "Probabilistic analysis of complex system behavior in turbomachinery design", Proceedings of International Gas Turbine Congress, Tokyo, Japan, November.