Skip to main content
Log in

Primitive endothelial cell lines from the porcine embryonic yolk sac

  • Articles
  • Cell and Tissue Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Endothelial cell lines have been established from cells that were isolated from porcine yolk sacs from day 18 and day 22 embryos and propagated in vitro under various growth conditions. After expansion in vitro, the general properties of the cells proved similar for the different media used. The endothelial cells expressed cell surface receptors for acetylated low-density lipoprotein and also expressed cell surface-associated angiotensin-converting enzyme. The cells showed a characteristically high level of binding for Bandeiraea simplicifolia lectin I and Dolichos biflorus agglutinin but did not bind significant amounts of Ulex europaeus lectin I. The cells expressed low but serologically detectable levels of Class I major histocompatibility complex (MHC) antigens but failed to bind antibodies directed against Class II MHC antigens. α5β1 integrins were weakly expressed, whereas vascular cell adhesion molecule-1 (CD106) and αvβ3 integrins were not detected. Three-dimensional tube formation was readily observed in cultures grown on Matrigel and occurrel even in uncoated plastic dishes in the absence of Matrigel. In contrast to most of the adult porcine endothelial cells, yolk sacderived endothelial cells did not posses serologically detectable receptors for porcine growth hormone (GH), an observation consistent with the finding that GH did not increase the proliferative rate of these cells. Electron microscopic examination demonstrated the presence of Weibel-Palade bodies, tight endothelial cell junctions, and typical rough endoplasmic reticulum. Exposure of the cells to either concanavalin-A-stimulated porcine splenocyte culture supernatants or to human tumor necrosis factor α did not cause upregulation of VCAM-1 or Class II MHC antigens. Addition of prrcine interferon-γ led to an increase in the level of expression of Class I MHC. Yolk sac endothelial cells from day 22 embryos showed a low but detectable level of expression of Class II MHC antigens, whereas the endothelial cells from day 18 embryos showed no expression of Class II antigens after interferon-γ stimulation. The cells maintained competence to develop vascular structures in vitro and could do so after coinjection with murine tumor cells into adult, immunocompromised mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akhtar, N.; Dickers, E.; Auerbach, R. The sponge/Matrigel angiogenesis assay. Angiogenesis 5 (in press); 2002.

  • Auerbach, R. Vascular endothelial cell differentiation: organ-specificity and selective affinities as the basis for developing anti-cancer strategies. Int. J. Radiat. Biol. 60:1–10; 1991.

    PubMed  CAS  Google Scholar 

  • Auerbach, R.; Alby, L.; Grieves, J., et al. A monoclonal antibody against angiotensin-converting enzyme: its use as a marker for murine, bovine, and human endothelial cells. Proc. Natl. Acad. Sci. U.S.A. 79:7891–7895; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Bach, F. H. Xenotransplantation: problems and prospects. Annu. Rev. Med. 49:301–310; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Bach, F. H.; Robson, S. C.; Winkler, H., et al. Barriers to xenotransplantation. Nat. Med. 9:869–873; 1995.

    Article  Google Scholar 

  • Bracy, J. L.; Sachs, D. H.; Iacomini, I. Inhibition of xenoreactive natural antibody production by retroviral gene therapy. Science 281:1845–1847; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Butler, D. New front in an old war. Nature 406:670–672; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Cioffi, L.; Sturtz, F. G.; Wittmer, S., et al. A novel endothelial cell-based gene therapy platform for the in vivo delivery of apolipoprotein E. Gene Ther. 6:1153–1159; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Dickinson, E. S.; Slakey, L. L. Plasma-derived serum as a selective agent to obtain endothelial cultures from swine aorta. In Vitro 18:63–70; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Grant, D. S.; Lelkes, P. I.; Fukuda, K., et al. Intracellular mechanisms involved in basement membrane induced blood vessel differentiation in vitro. In Vitro Cell. Dev. Biol. 27A:327–336; 1991.

    PubMed  CAS  Google Scholar 

  • Gumkowski, F.; Kaminska, G.; Kaminski, M., et al. Heterogeneity of mouse vascular endothelium: in vitro studies of lymphatic, large blood vessel and microvascular endothelial cells. Blood Vessels 24:11–23; 1987.

    PubMed  CAS  Google Scholar 

  • Joziasse, D. H.; Oriol R. Xenotransplantation: the importance of the Galaphal, 3Gal epitope in hyperacute vascular rejection. Biochim. Biophys. Acta 145:403–418; 1999.

    Google Scholar 

  • Knabel, M.; Kolle, S.; Sinowat, F. Expression of growth hormone receptor in the bovine mammary gland during prenatal development. Anat. Embryol. (Berl.) 198:163–169; 1998.

    Article  CAS  Google Scholar 

  • Li, J.; Wei, Y.; Wagner, T. E. In vitro endothelial differentiation of long-term cultured murine embryonic yolk sac cells induced by matrigel. Stem Cells 17:72–81; 1999.

    PubMed  CAS  Google Scholar 

  • Obeso, J.; Weber, J.; Auerbach, R. A hemangioendothelioma-derived cell line: its use as a model for the study of endothelial cell biology. Lab. Invest. 63:259–269; 1990.

    PubMed  CAS  Google Scholar 

  • Platt, J. L. New directions for organ transplantation. Nature 392:11–17; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Platt, J. L. New risks, new gains. Nature 407:28–30; 2000.

    Article  CAS  Google Scholar 

  • Plendl, J.; Hartwell, L.; Auerbach, R. Organ-specific change in Dolichos biflorus lectin binding by myocardial endothelial cells during in vitro cultivation. In Vitro Cell Dev. Biol. 29A:25–31; 1993.

    PubMed  CAS  Google Scholar 

  • Plendl, J.; Neumüller, C.; Vollmar, A., et al. Isolation and characterization of endothelial cells from different organs of fetal pigs. Anat. Embryol. 194:445–456; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Plendl, J.; Sinowatz, F.; Auerbach, R. A transformed murine myocardial vascular endothelial cell clone: characterization of cells in vitro and of tumours derived from the clone in situ. Virchows Arch. 426:619–628; 1995a.

    Article  PubMed  CAS  Google Scholar 

  • Plendl, J.; Sinowatz, F.; Auerbach, R., et al. Quantitative differences in neoglycoprotein binding for vascular endothelial cells from porcine brain, ovary, and testis in vitro. Microvasc. Res. 50:199–214; 1995b.

    Article  PubMed  CAS  Google Scholar 

  • Vandenbroeck, K.; Dijkmans, R.; Van Aerschott, A., et al. Engineering by PCR-based exon amplification of the genomic porcine interferon-gamma DNA for expression in Escherichia coli. Biochem. Biophys. Res. Commun. 180:1408–1415; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Vandenbroeck, K.; Martens, E.; D'Amdrea, S., et al. Refolding and single-step purification of porcine interferon-gamma from Escherichia coli inclusion bodies. Conditions for reconstitution of dimeric IFN-gamma. Eur. J. Biochem. 215:481–486; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Van der Laan L. J.; Lockey, C.; Griffeth, B. C., et al. Infection by porcine endogenous retrovirus after islet xenotransplantation in SCID mice. Nature 407:90–94; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S.-J.; Greer, P.; Auerbach, R. Isolation and propagation of yolk-sacderived endothelial cells from a hypervascular transgenic mouse expressing a gain-of-function fps/fes proto-oncogene. In Vitro Cell. Dev. Biol. 32A:292–299; 1996.

    Google Scholar 

  • Wei, Y.; Li, J.; Chen, W. Y., et al. Human growth hormone antagonist (G120R) delivered by a murine yolk sac cell-derived mini-organ decreases the growth rate of mice. Stem Cells 15:364–367; 1997.

    PubMed  CAS  Google Scholar 

  • Wei, Y.; Quertermous, T.; Wagner, T. E. Directed endothelial differentiation of cultured embryonic yolk sac cells in vivo provides a novel cell-based system for gene therapy. Stem Cells 13:541–547; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, R. A. Transgenic pigs and virus adaptation. Nature 391:327–328; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, R. A. Tenografts and retroviruses. Science 285:1221–1222; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Yu, D.; Auerbach, R. Brain-specific differentiation of mouse yolk sac endothelial cells. Brain Res. Dev. Brain Res. 117:159–169; 1999.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Auerbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plendl, J., Cilligan, B.J., Wang, SJ. et al. Primitive endothelial cell lines from the porcine embryonic yolk sac. In Vitro Cell.Dev.Biol.-Animal 38, 334–342 (2002). https://doi.org/10.1290/1071-2690(2002)038<0334:PECLFT>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2002)038<0334:PECLFT>2.0.CO;2

Key words

Navigation