Skip to main content
Log in

Proliferation of human hematopoietic bone marrow cells in simulated microgravity

  • Special-Nasa/Johnson Space Center Workshop
  • NASA Biotechnology: Cell Science in Microgravity
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Expansion and/or maintenance of hematopoietic stem cell (HSC) potential following in vitro culture remains a major obstacle in stem cell biology and bone marrow (BM) transplantation. Several studies suggest that culture of mammalian cells in microgravity (μ-g) may reduce proliferation and differentiation of these cells. We investigated the application of these findings to the field of stem cell biology in the hopes of expanding HSC with minimal loss of hematopoietic function. To this end, BM CD34+ cells were cultured for 4–6 d in rotating wall vessels for simulation of μ-g, and assessed for expansion, cell cycle activation, apoptosis, and hematopoietic potential. While CD34+ cells cultured in normal gravity (1-g) proliferated up to threefold by day 4–6, cells cultured in μ-g did not increase in number. As a possible explanation for this, cells cultured in simulated μ-g were found to exit G0/G1 phase of cell cycle at a slower rate than 1-g controls. When assayed for primitive hematopoietic potential in secondary conventional 1-g long-term cultures, cells from initial μ-g cultures produced greater numbers of cells and progenitors, and for a longer period of time, than cultures initiated with 1-g control cells. Similar low levels of apoptosis and adhesion molecule phenotype in μ-g and 1-g-cultured cells suggested similar growth patterns in the two settings. These data begin to elucidate the effects of μ-g on proliferation of human hematopoietic cells and may be potentially beneficial to the fields of stem cell biology and somatic, gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, J.; Gerren R.; Chapes S. The effect of space and parabolic flight on macrophage hematopoiesis and function. Exp. Cell Res. 246:160–165; 1995.

    Article  Google Scholar 

  • Atkov, O.; Bednenkom V. Hypokinesia and weightlessness: clinical and physiological aspects. Madison, CT: International Universities Press; 1992.

    Google Scholar 

  • Bennaceur-Griscelli, A.; Tourino C.; Izac, B.; Vainchenker, W.; Coulombel, L. Murine stromal cells counteract the loss of long-term culture-initiating cell potential induced by cytokines in CD34(+) CD38(low/neg) human bone marrow cells. Blood 94:529–534; 1999.

    PubMed  CAS  Google Scholar 

  • Berardi, A.; Wang A.; Levine J.; Lopez, P.; Scadden D. Functional isolation and characterization of human hematopoietic stem cells. Science 267:104–106; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Bhatia, M.; Bonnet, D.; Kapp, U.; Wang, J.; Murdoch, B.; Dick, J. Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture. J. Exp. Med. 186:619–623; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Brandt, J.; Baird, N.; Lu, L.; Srour, E.; Hoffman, R. Characterization of a human hematopoietic progenitor cell capable of forming blast cell containing colonies in vitro. J. Clin. Investig. 82:1017–1021; 1988.

    PubMed  CAS  Google Scholar 

  • Brandt, J.; Srour, E. F., van Besien, K.; Briddell, R. A.; Hoffman, R. Cytokinedependent long-term culture of highly enriched precursors of hematopoietic progenitor cells from human bone marrow. J. Clin. Investig. 86:932–941; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Burton, R.; Smith, A. Hematological findings associated with chronic acceleration. Space Life Sci. 1:501–507; 1969.

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet, G.; Nys, G.; Bouillonm, R. Microgravity reduces the differentiation of human osteoblastic MG-63 cells. J. Bone Miner. Res. 12:786–792; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Cogoli A.; Cogoli-Greuter, M. Activation and proliferation of lymphocytes and other mammalian cells in microgravity. Adv. Space Biol. Med. 6:33–42; 1997.

    PubMed  CAS  Google Scholar 

  • Cogoli-Greuter, M.; Meloni, M.; Sciola, L.; Spano, A.; Pippia, P.; Monaco, G.; Cogoli, A. Movements and interactions of leukocytes in microgravity. J. Biotech. 47:279–287; 1996.

    Article  CAS  Google Scholar 

  • Cooper, D.; Pellis, N. R. Suppressed PHA activation of T lymphocytes in simulated microgravity is restored by direct activation of protein kinase C. J. Leukoc. Biol. 63:550–562; 1998.

    PubMed  CAS  Google Scholar 

  • Criswell-Husak, B. S., Immune responses during space, flight. Exp. Gerontol. 26:289–296; 1991.

    Article  Google Scholar 

  • Davis, T.; Wiesmann, W.; Kidwell, W., et al. Effect of spaceflight on human stem cell hematopoiesis: suppression of erythropoiesis and myelopoiesis. J. Leukoc. Biol. 60:69–75; 1996.

    PubMed  CAS  Google Scholar 

  • Dercksen, M.; Gerritsen, W.; Rodenhuis, S. ea al. Expression of adhesion molecules on CD34+ cells: CD34+ cells l-selectin+ cells predict a rapid platelet recovery after peripheral blood stem cell transplantation. Blood 85:3313–3320; 1995.

    PubMed  CAS  Google Scholar 

  • Fulford, M. Review of the biological effects of weightlessness on the human endocrine system. Receptor 3:145–152; 1993.

    Google Scholar 

  • Gothot, A.; van der Loo, J.; Clapp, W.; Srour, E. Cell cycle-related changes in repopulating capacity of human mobilized peripheral blood CD34+ cells in non-obese diabetic/severe combined immune-deficient mice. Blood 92:2641–2647; 1998.

    PubMed  CAS  Google Scholar 

  • Henschler, R.; Brugger, W.; Luft, T.; Frey, T.; Mertelsmann, R.; Kanz, L. Maintenance of transplantation potential in ex vivo expanded CD34+ selected human peripheral blood progenitor cells. Blood 84:2898–2909; 1994.

    PubMed  CAS  Google Scholar 

  • Hughes-Fulford, M.; Lewis, M. Effects of microgravity on osteoblast growth and activation. Exp. Cell Res. 224:103–110; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Humeau, L.; Namikawa, R.; Bardin, F.; Mannoni, P.; Roncarolo, M.; Chabannon C. Ex vivo manipulations alter the reconstitution potential of mobilized human CD34+ peripherial blood progenitors. Leukemia 13:438–444; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Kimzey, S. The effects of extended spaceflight on hematological and immunological systems. JAMWA 60:218–225; 1975.

    Google Scholar 

  • Koller, M.; Palsson, M.; Machel, I.; Palsson, B. Long-term culture-initiating cell expansion is dependent on frequent medium exchange combined with stromal and other accessory cell effects. Blood 86:1784–1793: 1995.

    PubMed  CAS  Google Scholar 

  • Lange, R.; Gilbson, L.; Driscoll, T.; Allebban, Z.; Ichiki, A. Effects of microgravity and increased gravity on bone marrow of rats. Aviat. Space Environ. Med. 63:730–739; 1994.

    Google Scholar 

  • Matsunaga, T.; Kato, T.; Miyazaki, H.; Ogawa, M. Thrombopoietin promotes the survival of murine hematopoietic long-term reconstituting cells: comparison with the effects of FLT3/FLK-2 ligand and interleukin-6. Blood 92:452–461; 1998.

    PubMed  CAS  Google Scholar 

  • Meehan, R.; Neale, L.; Krause, E.; Stuart, C.; Smith, M.; Cintron, N.; Sams, C. Alterations in human mononuclear lymphocytes following space flight. Immunology 76:491–503; 1992.

    PubMed  CAS  Google Scholar 

  • Pellis, N.; Goodwin, T.; Risin, D.; McIntyre, B.; Pizzini, P.; Cooper, D.; Baker, T.; Spaulding, G. Changes in gravity inhibit lymphocyte locomotion through type I collagen. In Vitro Cell. Dev. Biol. 33A:398–407; 1997.

    Google Scholar 

  • Schwarz, R.; Goodwin, T.; Wolf, D. Cell culture for three-dimensional modeling in rotating wall vessels: an application of simulated microgravity. J. Tissue Cult. 14:51–59; 1992.

    Article  CAS  Google Scholar 

  • Smileym, S.; Gillock, E.; Black, M.; Consigli, R. The effect of space flight on monoclonal antibody synthesis in a hybridoma mouse cell line. Exp. Cell Res. 230:411–419; 1997.

    Article  Google Scholar 

  • Srour, E.; Brandt, J.; Leemhuis, T.; Ballas, C.; Hoffman, R. Relationship between cytokine-dependent cell cycle progression and MHC class II antigen expression by human CD34+HLA-DR-bone marrow cells. J. Immunol. 148:815–821; 1992.

    PubMed  CAS  Google Scholar 

  • Srour, E. F.; Brandt, J. E.; Briddell, R. A.; Grigsby, S.; Leemhuis, T.; Hoffman, R. Long-term generation and expansion of human primitive hematopoietic progenitor cells in vitro. Blood 81–89:661–669; 1993.

    Google Scholar 

  • Sutherland, H.; Eaves, C.; Lansdorp, P.; Thacker, J.; Hogge, D. Differential regulation of primitive human hematopoietic cells in long-term cultures maintained on genetically engineered murine stromal cells. Blood 78–85:666; 1991.

    Google Scholar 

  • Sutherland, H.; Hogge, D.; Cook, D.; Eaves, C.; Alternative mechanisms with and without steel factor support primitive human hematopoiesis. Blood 81–88:1465; 1993.

    Google Scholar 

  • Tavassoli, M. Anemia of spaceflight. Blood 60:1059–1065; 1982.

    PubMed  CAS  Google Scholar 

  • Taylor, G. Cell anomalies associated with spaceflight conditions. New York: Plenum: 1987.

    Google Scholar 

  • Traycoff, C.; Cornetta, K.; Yoder, M.; Davidson, A.; Srour, E. Ex vivo expansion of murine hematopoietic progenitor cells generates classes of expanded cells possessing varying levels of bone marrow repopulating potentials. Exp. Hematol. 24:299–305; 1996.

    PubMed  CAS  Google Scholar 

  • Traycoff, C.; Kosak, S.; Grigsby, S.; Srour, E. Evaluation of ex vivo expansion potential of cord blood and bone marrow hematopoietic progenitor cells using cell tracking and limiting dilution analysis. Blood 85:2059–2066; 1995.

    PubMed  CAS  Google Scholar 

  • Traycoff, C.; Orazi, A.; Ladd, A.; Rice, S.; McMahel, J.; Srour, E. Proliferation-induced decline of primitive hematopoietic progenitor cell activity is coupled with an increase in apoptosis of ex vivo expanded CD34+ cells. Exp. Hematol. 26:53–59; 1998.

    PubMed  CAS  Google Scholar 

  • Tsao, Y.; Goodwin, T.; Wolf, D.; Spaulding, G. Responses of gravity level variations on the NASA/JSC bioreactor system. Physiologist 35:1–5; 1992.

    Google Scholar 

  • Verfaillie, C. Direct contact between human primitive hematopoietic progenitors and bone marrow stroma is not required for long-term in vitro hematopoiesis. Blood 79:2821–2830; 1992.

    PubMed  CAS  Google Scholar 

  • Verfaillie, C. Soluble factor(s) produced by human bone marrow stroma increase cytokine-induced proliferation and maturation of primitive hematopoietic progenitors while preventing their terminal differentiation. Blood 82:2045–2051; 1993.

    PubMed  CAS  Google Scholar 

  • Verfaillie, C.; Miller, J. A novel single-cell proliferation assay shows that long-term culture-initiating cell (LTC-IC) maintenance over time results from the extensive proliferation of a small fraction of LTC-IC. Blood 86:2137–2142; 1995.

    PubMed  CAS  Google Scholar 

  • Young, J.; Varma, A.; DiGiusto, D.; Backer, M. Retention of quiescent hematopoietic cells with high proliferative potential during ex vivo stem cell culture. Blood 87:545–551; 1996.

    PubMed  CAS  Google Scholar 

  • Zanjani, E.; Flake, A.; Almeida-Porada, G.; Tran, N.; Papayannopoulou, T. Homing of human cells in the fetal sheep model: modulation by antibodies activating or inhibiting very late activation antigen-4-dependent function. Blood 94:2515–2521; 1999.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Artur Plett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plett, P.A., Frankovitz, S.M., Abonour, R. et al. Proliferation of human hematopoietic bone marrow cells in simulated microgravity. In Vitro Cell.Dev.Biol.-Animal 37, 73–78 (2001). https://doi.org/10.1290/1071-2690(2001)037<0073:POHHBM>2.0.CO;2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2001)037<0073:POHHBM>2.0.CO;2

Key words

Navigation