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Abstract: This paper proposes a new tuning approach, by which, all parameters of a data-

driven Model-Free Adaptive Control (MFAC) algorithm are automatically determined 

using a nonlinear Virtual Reference Feedback Tuning (VRFT) algorithm. The approach is 

referred to as mixed MFAC-VFRT control and it leads to mixed MFAC-VFRT algorithms. 

An advantage of mixed MFAC-VFRT control, is that it combines systematically, the 

features of VRFT (it computes the controller parameters using only the input/output data) 

with those of MFAC. This is especially illustrated by comparison with the classical MFAC 

algorithms, the initial values of the parameters, which are obtained through a process that 

involves solving an optimization problem. The application that validates the mixed MFAC-

VFRT algorithms, by experiment, is a nonlinear twin rotor aerodynamic system laboratory 

equipment position control system, that represents a tribute, to Prof. Antal (Tony) K. Bejczy 

for his excellent results in space robotics, robot dynamics and control, haptics and force 

perception/control. 

Keywords: Model-Free Adaptive Control; twin rotor aerodynamic system; optimal control; 

state-space model; Virtual Reference Feedback Tuning 

1 Introduction 

Virtual Reference Feedback Tuning (VRFT) is a technique used for data-driven 

controllers. VRFT was first proposed and applied in [1] to Single Input-Single 

Output (SISO) systems, then in [2] Multi Input-Multi Output (MIMO) systems 

and next extended in [3, 4] a nonlinear version. The main process of VRFT 

consists of collecting the input/output (I/O) data from an unknown open-loop 
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process, and with this data, computes the controller parameters. A disadvantage of 

this technique is that it does not guarantee the closed loop control system (CS) 

stability. 

As presented in [5, 6], the main features of Model-Free Adaptive Control (MFAC) 

is that MFAC algorithms make use of only the online I/O data of the process, and 

they ensure CS stability through reset conditions related to a so-called Pseudo-

Partial-Derivatives (PPD) matrix. 

Using the complementary features of MFAC and VRFT, this paper proposes a 

mixed MFAC-VFRT control approach. This mixed algorithm is also successfully 

applied in [7] to a class of nonlinear MIMO systems. The approach aims to control 

the azimuth and pitch motions of the Twin Rotor Aerodynamic System (TRAS), 

i.e., a representative process for nonlinear robotics, space and automotive 

applications [8]-[12] with focus on the seminal contributions of Prof. Antal (Tony) 

K. Bejczy, to whose memory, this paper is dedicated. 

As proven in [13] for TRAS, the MFAC algorithms behave practically, like 

classical integral controllers, because the PPD matrix is almost constant, and this 

motivates the need for combination with other data-driven techniques. The mixed 

MFAC-VFRT control approach is time saving in finding the optimal parameters 

of the classical MFAC algorithm, which has five parameters in the SISO scenario 

and eight parameters in the MIMO scenario, for the TRAS laboratory equipment 

considered in this paper. This is especially important, as a basis for other 

combinations of data-driven control approaches [14, 15]. 

The paper is organized as follows. Section 2 describes the TRAS laboratory 

equipment. An overview on MFAC and nonlinear VRFT is presented in Section 3. 

The MFAC-VFRT control approach is shown in Section 4. The experimental 

validation is done in Section 5 and conclusions are outlined in the final section. 

2 Twin Rotor Aerodynamic System 

The nonlinear state-space model that describes the MIMO TRAS process is [16]: 
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 (1) 

where: [%] 1u  – the first control input, i.e., the PWM duty cycle of the horizontal 

(main) direct current (DC) motor, [%] 2u  – the second control input, i.e., the 
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PWM duty cycle of the vertical (tail) DC motor, 
1]rad[ yh   – the first process 

output, i.e., the azimuth (horizontal) position of the beam that supports the main 

and the tail rotor, 
2]rad[ yv   – the second process output, i.e., the pitch 

(vertical) position of the beam. The linearization of (1) at the equilibrium point 

leads to the linearized state-space model of the process, which consists of the third 

to eighth equations plus the first two equations replaced by [17, 18]: 

,, 36341514 vvvhvh aaaa    (2) 

where all variables are expressed as deviations with respect to the equilibrium 

point. 

The typical control objective for TRAS is to ensure the regulation and tracking for 

vertical and horizontal motions, i.e., to control the azimuth and the pitch. This 

paper considers a MIMO CS that is decomposed into two SISO CSs, namely the 

azimuth control loop and the pitch control loop. Although the theory will be 

presented as follows, in the general MIMO case, the experimental results will be 

given in Section 5 for both SISO CSs. 

3 Overview on MFAC and Nonlinear VRFT 

3.1 MFAC 

MFAC is developed using the MIMO nonlinear discrete-time process model: 

)),(),...,(),(),...,(()1( uy nkknkkk  uuyyfy  (3) 

where 12

21 ])()([)(  Ry Tkykyk  is the controlled output vector, 

12

21 ])()([)(  Ru Tkukuk  is the control input vector, T  stands for matrix 

transposition, 
yn  and 

un  are the unknown process orders and f  is an unknown 

nonlinear vector-valued function, 2)2(2
: RRf 

 uy nn
. The partial derivatives of f  

with respect to the elements of the vector )(ku  (i.e., the control inputs) are 

assumed to be continuous. 

Since the Compact Form Dynamic Linearization (CFDL) is the most popular 

version of MFAC [5], this paper treats only the CFDL version. The results can be 

extended to other versions as well. According to [5] the PPD matrix )(kΦ  exists 

such that (3) can be transformed into the following CFDL-MFAC data model: 

),()()1( kkk uΦy   (4) 
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where 
}2,1{,)]([)(  jiij kkΦ , bk ||)(||Φ . These conditions concerning )(kΦ  are 

met only if the model in (3) is assumed Lipschitz, i.e., ||)(||||)1(|| kbk uy   for 

each fixed discrete time moment k , and 0||)(||  ku , with 

)()1()1( kkk yyy  , )1()()(  kkk uuu  and 0const b . 

The MFAC objective is to solve the optimization problem [5]: 
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where Tkykyk ])1()1([)1( *

2

*

1 y  is the tracking reference input vector and 

0  is a weighting parameter. The estimate of )(kΦ  is computed using the I/O 

data from the process, this matrix should be diagonally dominant and bounded: 

),12( ,1 , },2,1{, , |)(|  ,|)(| 12221  abbajijibakbbk iiij
 (6) 

where the signs of all elements of )(kΦ  should remain unchanged. 

The estimate )(ˆ kΦ  of the PPD matrix )(kΦ  is: 
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where 10   is a step size constant and 0  is another weighting factor 

parameter, different to optimal control. The resetting conditions are: 
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where )1(ˆ
ij  is the initial value of )(ˆ kij , }2,1{i , }2,1{j . According to [5], 

the substitution of )()()()1( kkkk uΦyy   into (5) leads to the control law 

specific to MFAC algorithms: 
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where 0  is another step size constant. Finding the parameters 

  , ,   ,  ),1(Φ̂  of the MFAC algorithm is a difficult task, without a model of 

the controlled process and guidelines for appropriate selection, which do not exist 

to the best of authors’ knowledge. This procedure involving a process model is 

usually an optimization problem, which is solved for a specified control scenario 

as illustrated in [17, 18]. However, this defies the purpose of MFAC and prevents 

it from being a truly model-free approach. The parameters of MFAC are obtained 

in a nonlinear VRFT framework that will be introduced in Section 4. 
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3.2 Nonlinear VRFT 

Nonlinear VRFT uses a linear or a nonlinear reference model, which ultimately 

must be tracked by the closed-loop CS. Nonlinear VRFT uses only a single open-

loop experiment, where a rich spectrum frequency signal is applied as input to the 

stable nonlinear process, then the I/O signals are collected, and then used to 

compute the controller parameters [3, 4, 19]. 

The model reference objective function (o.f.) used in nonlinear VRFT is [19]: 

,)()()(
1

2





N

k

d

MR kkJ yyθ θ
 (10) 

where ))(),...,(),(),...,(()1( uy nkknkkk  θθθ uuyyfy  is the nonlinear 

process output vector, ))(,),(),(,),1(,()( ecuc nkknkkCk  eeuuθu θθ   (in 

shorthand notation expressed as ))(),1(,()( kkCk euθu θθ  ) is the nonlinear 

controller output vector, with uc  and ec  – the known orders of the fixed structure 

controller parameterized by the vector θ , )()()( kkk θyre   is the tracking error, 

)(kr  is the reference input vector applied to the closed-loop CS, 

))(,),1(),(,),1(()( mm

ddd nkknkkk ry rryymy    is the output of the user-

selected nonlinear reference model m  of orders my  and mr  accepting that the 

input is set as )(kr . It is assumed that m  is non-singular. 

VRFT assumes that an I/O pair of data )}(),({ kk yu , Nk ...0 , are available from 

the open-loop stable process. Then a virtual reference input vector )(kr  is 

calculated as ))(()( 1 kk ymr  , such that the reference model output and the 

closed-loop CS output have similar trajectories. By enforcing the notation of 

))((1 kym  results in )(kr , which set as input to m  and gives )(ky . The virtual 

reference tracking error is then )()()( kkk yre  . The controller which achieves 

)(ku  if )(ke  is applied to its input is the one achieving reference model tracking. 

The parameters of this controller are calculated by minimizing the o.f. [19]: 
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According to [19], in MIMO VRFT there is no need for any time-varying filter to 

make )(θMRJ  and )(θVRJ  approximately equal, as is usually the case in classical 

VRFT. The two o.f.s can be made approximately equal for a rich parameterization 

of the controller, which can be, for example, a neural network [19, 20]. The same 

nonlinear VRFT theory can be used for SISO CS design as a particular case. 
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4 Mixed MFAC-VRFT Control Approach 

This section shows that VRFT can be used to find the parameters of MFAC 

algorithms. First, it will be shown that a general MFAC algorithm comprised of 

the estimation mechanism (7) and the control law (9) can be expressed as both a 

state-space nonlinear model and an I/O nonlinear recurrence. Let the nonlinear 

state-space model of the MFAC controller be: 
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equivalent to: 
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where 12, Rhg  are nonlinear functions of their arguments. By introducing the 

additional state vector )1()(  kk uz , it can be shown that a state-space 

mathematical model is in the form )),(,)1(()( θUχFχ kkk  , where the state 

vector is TTTT kkkk ])(ˆ)()([)( Φzuχ  , the input vector is 
TTTT kkkk ])1()()1([)( *  yyyU  and the parameter vector is T][ θ , 

which is considered as an additional input vector (i.e., disturbance vector). 

Using the above notations and replacing )(ˆ kΦ  from the first equation in (13) with 

the second one, the following state-space form of the MIMO MFAC algorithm is 

obtained: 
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Starting with the initial conditions )0()1(),1(),1(ˆ uzuΦ   applied to the nonlinear 

state-space model given in (14), the control input vector )(ku  is expressed 

recurrently: 
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If we denote )()1()( * kkk yye   then )(ku  in (15) can be considered to 

emerge from an input-output nonlinear recurrent description of the form 

))(,),(),(,),1(,()( ecuce nkknkkCk
ee

 eeuuθu θθ  , with }),1(ˆ{ T

e θΦθ  . 

If )(kr  specific to VRFT is considered equivalent to )1(* ky  in MFAC, then the 

MFAC controller structure can be considered in a closed-loop CS. Figure 1 shows 

the CS structure with MFAC-VRFT algorithm. 

 

Figure 1 

CS structure with mixed MFAC-VRFT algorithm [7] 

Choosing the reference model 
2Im   in the nonlinear VRFT design is equivalent 

to trying to minimize 



N

k

MR kkJ
1

2
* )()()( yyθ θ

, which is the batch-wise version 

of the adaptive one-step ahead MFAC o.f. 
MFACJ  in (5) with 0 . However, no 

causal controller that can achieve 
2Im   exists in practice. Choosing therefore 

2Im   in VRFT is equivalent to 0  in MFAC. The parameter   is crucial 

since it impacts the MFAC stability in the sense that an increased   improves 

stability which simply means adding more weight to the control input increment. 

In terms of VRFT, this means choosing a reference model m  with lower 
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bandwidth which increases the CS response time but also increases the overall CS 

robustness. Therefore, the proposed mixed MFAC-VRFT control approach 

translates the design of MFAC algorithm parameters (such as )1(Φ̂  and 
T][ θ ) into easier to comprehend closed-loop CS characteristics 

described by the reference model m . 

5 SISO Experimental Validation 

Two tuning strategies are described in this section in order to validate the mixed 

MFAC-VRFT control approach: 

- an indirect one, in which the VRFT framework is used and the o.f. in (11) is 

minimized, this is the mixed MFAC-VRFT control approach 

- a direct tuning approach, in which a process model is used and a 

metaheuristics Gravitational Search Algorithm (GSA) optimizer [21]-[23] is 

used to minimize the o.f.s: 
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where *τ  is the optimal parameter vector of VRFT-MFAC and MFAC algorithms, 

the expression of the parameter vector is T

aaaaa ]       )1(ˆ[ τ  for azimuth 

control and T

ppppp ]       )1(ˆ[ τ  for pitch control, a  indicates the azimuth 

control and p  indicates the pitch control. Other optimization problems with 

adequate o.f.s used as performance indices can be used as well [24]-[26]. 

The bounds in (6) are set as 2/)1(ˆ2 b  and 
2ab , where 3a . This section will 

investigate if the performance of CS with mixed VRFT-MFAC algorithm is 

similar to the performance of CS with MFAC algorithm. The CS performance is 

assessed through ten experimental trials of the o.f.s aJ 
 and pJ 

. The averages and 

variances of these o.f.s. are next taken for the sake of improved measurement of 

CS and algorithm performance to avoid random disturbances. 

The experiments have shown that the performance of CS with mixed VRFT-

MFAC algorithm depends on the initial signals applied to the open-loop 

experiment and also on the reference model m , which, according to [1]-[4] must 

be chosen such that the closed-loop CS signal should be capable to track the 

reference model. 



Acta Polytechnica Hungarica Vol. 13, No. 1, 2016 

 – 91 – 

Extensive work shows that the choice of the reference model ensuring an overall 

stable CS is rather restrictive. 

The MFAC algosithms are designed using the transfer function matrix: 

21
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for azimuth control, and: 
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for pitch control. VRFT is next applied to compute the controllers initial 

parameters using a GSA that minimizes the o.f. in (11). These parameters are: 

513)1(ˆ  , bounded by )5.769,5.256()1(ˆ  , 7 , 0076.0 , 704 , and 

05.993  for azimuth control and 22.4)1(ˆ  , bounded by )34.6,11.2()1(ˆ  , 

18.0 , 0039.0 , 43.4 , and 85.999  for pitch control. 

The initial parameters of the MFAC algorithms obtained by a GSA that minimizes 

the o.f. in (17) are: 110)1(ˆ  , bounded by )165,55()1(ˆ  , 55.1 , 1.0 , 

65.3 , and 89.0  for azimuth control, and 160)1(ˆ  , bounded by 

)240,80()1(ˆ  , 35.5 , 31.0 , 21.6 , and 54.0  for pitch control. 

Table 1 gives the averages and the variances of 
J . The CS responses as control 

inputs and controlled outputs versus time are presented in Figure 2 for the azimuth 

SISO control loop and in Figure 3 for the pitch SISO control loop. Figures 2 and 3 

also illustrate the tracking reference inputs, which can be slightly different for 

other applications [27]-[31]. 

Table 1 

The values of the o.f.s 

 Mixed VRFT-MFAC MFAC 

Average of aJ 
 0.004 0.0036 

Variance of aJ 
 7108990.1   7105343.6   

Average of pJ 
 0.0034 0.0036 

Variance of pJ 
 8109739.1   9105406.4   
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Figure 2 

Experimental results related to SISO azimuth control: a) 
1u  versus time, b) 

1y  and *

1y  versus time 
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Figure 3 

Experimental results related to SISO azimuth control: a) 
2u  versus time, b) 

2y  and *
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Conclusions 

This paper has proposed the combination of two data-driven control approaches, 

which has led to the formulation of a mixed MFAC-VFRT control approach. This 

approach leads to mixed MFAC-VFRT algorithms that are actually MFAC 

algorithms tuned by VRFT. 

The experimental results presented in Section 5 outline that the differences of the 

o.f.s. from Table 2 are insignificant for both azimuth and pitch SISO control. 

Figures 2 and 3 show that the control inputs and the controlled outputs almost 

overlap. Therefore, the mixed MFAC-VFRT control approach is a time saving 

solution that finds the controller optimal parameters and offers similar CS 

performance with that of CS with MFAC algorithm, whose initial parameters were 

obtained using GSA. The mixed MFAC-VFRT control approach is useful for 

processes whose identification is difficult or impossible. 

Further research will treat the study of several constraints concerning the choice of 

the reference model and performance improvement, which can be achieved by the 

combination of artificial intelligence techniques (including fuzzy control) and 

neural networks [32]-[39]. 
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