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The five-dimensional ferromagnetic Ising model is simulated on the Creutz cellular automaton algorithm using

finite-size lattices with linear dimension 4 ≤ L ≤ 8. The critical temperature value of infinite lattice is found to
be Tχ(∞) = 8.7811 (1) using 4 ≤ L ≤ 8 which is also in very good agreement with the precise result. The value
of the field critical exponent (δ = 3.0067(2)) is good agreement with δ = 3 which is obtained from scaling law of
Widom. The exponents in the finite-size scaling relations for the magnetic susceptibility and the order parameter
at the infinite-lattice critical temperature are computed to be 2.5080 (1), 2.5005 (3) and 1.2501 (1) using 4 ≤ L ≤ 8,
respectively, which are in very good agreement with the theoretical predictions of 5

2
and 5

4
. The finite-size scaling

plots of magnetic susceptibility and the order parameter verify the finite-size scaling relations about the infinite-
lattice temperature.
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1. Introduction

While the five-dimensional ferromagnetic Ising model
is not directly applicable to real magnetic systems, it is
useful to investigate the influence of dimensionality on
phase transitions [1]. In fact, in Euclidean quantum field
theory, the 4-d ferromagnetic Ising model describes the
physical dimension. As the dimensionality and/or the
lattice size increases, the simulation of the ferromagnetic
Ising model by the conventional Monte Carlo method
becomes impractical and faster algorithms are needed.
The Creutz cellular automaton algorithm [2] does not re-
quire high-quality random numbers, it is an order of mag-
nitude faster than the conventional Monte Carlo method
and compared to the Q2R cellular automaton [3], it has
the advantage of fluctuating internal energy from which
the specific heat can be computed.

The four-dimensional Ising model in the presence of
external magnetic field is simulated [3]. In two dimen-
sions, the solution of ferromagnetic Ising model is in-
vestigated [4–8]. By considering different approximate
methods, the approximations of the solutions of two-
dimensional ferromagnetic Ising model are presented [9–
13]. In addition, the four-dimensional ferromagnetic
Ising model solution is approximated by using Creutz
cellular automaton algorithm with nearest neighbor in-
teractions and near the critical region [14–23]. The algo-
rithm of approximating finite size behavior of ferromag-
netic Ising model is extended to higher dimensions [14–
32]. It is established that the algorithm has been pow-
erful in terms of providing the values of static critical
exponents near the critical region in four and higher di-
mensions with nearest neighbor interactions [14–32].
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In this paper, we present the result of the simulation
of the five-dimensional ferromagnetic Ising model with
the Creutz cellular automaton algorithm. The value of
the field critical exponent (δ) is obtained. The expo-
nents

(
d
2 ,

d
4

)
for the magnetic susceptibility and the order

parameter at Tc are obtained for 4 ≤ L ≤ 8 which is also
in very good agreement with the theoretical results.

The model is described in Sect. 2, the results are dis-
cussed in Sect. 3 and a conclusion is given in Sect. 4.

2. Model

In general, n ≥ 5 binary bits are associated with each
site of the lattice. The value for each site is determined
from its value and from those of its nearest neighbors
at the previous time step. The updating rule, which de-
fines a deterministic cellular automaton, is as follows: of
the n binary bits on each site, the first one is the Ising
spin Bi. Its value may be “0” or “1”. The Ising spin en-
ergy in the presence of an external magnetic field, HI, is
described by the Hamiltonian of the form

HI = −J
∑
〈ij〉

SiSj − h
∑
〈i〉

Si, (1)

by taking into account of the interaction between the
nearest neighbors and also the interaction of the spins Si
with external magnetic field h, directed “up” (Si = +1).
The spins affected by the field are directed “up” and not
changed during the simulation. Therefore, these spins
play the role of the magnetic field. In the Hamiltonian,
Si = 2Bi − 1 and h is the ratio of the number of “up”
spins to the number of all spins. The next n− 2 bits are
for the momentum variable conjugate to the spin (the de-
mon). These n − 2 bits form an integer which can take
values within the interval (0,

∑n−2
i=1 2i−1). The kinetic en-

ergy (in units of J) associated with the demon can take
on four times these integer values. The total energy

H = HI +HK, (2)
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is conserved; here HK is the kinetic energy of the lat-
tice. For a given total energy, the system temperature T
(in units of J/kB where kB is the Boltzmann constant)
is obtained from the average value of the kinetic en-
ergy of a demon. The n-th bit provides a checkerboard
style updating, therefore it allows the simulation of the
Ising model on a cellular automaton. The black sites
of the checkerboard are updated and then their colour is
changed into white; the white sites are changed into black
without being updated. The updating rules for the spin
and the momentum variables are as follows: For a site to
be updated its spin is flipped and the change in the Ising
energy (internal energy), HI, is calculated. If this energy
change is transferable to or from the momentum variable
associated with this site, such that the total energy H is
conserved, then this change is made and the momentum
is appropriately changed. Otherwise, the spin and the
momentum are not changed. As the initial configuration
all the spins are taken ordered (up or down). The initial
kinetic energy is given to the lattice via the second and
the third bits of the momentum variables in the white
sites randomly, such that the value of the initial kinetic
energy for such a demon is 24 (in units of J).

Simulations are carried out on simple hypercubic lat-
tices L5 of linear dimensions 4 ≤ L ≤ 8 with periodic
boundary conditions. The cellular automaton develops
9.6 × 105 (L = 4, 6, 8) sweeps for each run, with 7 runs
for each total energy.

3. Results and discussion

The temperature dependences of the order parameter
and the magnetic susceptibility are illustrated in Fig. 1
for 4 ≤ L ≤ 8. The critical temperatures of the finite-size
lattices obtained from the magnetic susceptibility max-
ima Tχc (L) for 4 ≤ L ≤ 8 are listed in Table I. The
computed values of χc and Mc are listed in Table II.

TABLE I

The maximum values and the critical temperatures
of the magnetic susceptibility for 4 ≤ L ≤ 8.

L Tχc (L) χmax

4 8.576(2) 1541(2)
6 8707(3) 4.256(4)
8 8745(1) 8767(3)

The dependence of the critical temperatures Tχc (L) ob-
tained from the magnetic susceptibility maxima of the
finite-size lattices on linear dimension L is given by the
following expression [14, 26, 33–37]:

Tχc (∞)− Tχc (L) ∝ L−d/2. (3)
The value of the infinite-lattice critical temperature
for the five-dimensional ferromagnetic Ising model,
8.7811 (1) is obtained from the straight line fit of the mag-
netic susceptibility maxima for 4 ≤ L ≤ 8 (Fig. 2, Ta-
ble III). The value obtained from infinite lattice criti-
cal temperature Tχ(∞) = 8.7811(1) for 4 ≤ L ≤ 8

Fig. 1. The temperature dependence of (a) the order
parameter (M) and (b) the magnetic susceptibility (χ)
for 4 ≤ L ≤ 8.

agrees with the results obtained previously using different
methods [14, 26, 37–46].

Fig. 2. The value of the infinite-lattice critical tem-
perature for the five-dimensional ferromagnetic Ising
model, Tχc (∞) = 8.7811 (1), obtained by extrapolating
temperatures of the lattice with the linear dimension
4 ≤ L ≤ 8 as L→∞.

For a lattice linear dimension L and very small h at
T = Tc(L), the order parameter is given by

M(L) ∝ h1/δ(L), (4)
where δ(L) is the field critical exponent (Fig. 3). Scaling
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law of Widom is the following:
γ = β(δ − 1), (5)

where γ = 1, β = 1/2 and δ = 3 for d = 5 [29, 30, 41, 42].

Fig. 3. The dependence ofM against h for the lattices
with the linear dimension 4 ≤ L ≤ 8 (Tc = 8.7811 (1)).

Fig. 4. The log–log plots of M(L, Tc(L, h)) against h
with the slope giving the value of 1/δ = 0.0502, 1/δ =
0.0696 and 1/δ = 0.0875 for L = 4, 6 and 8 at Tc =
8.7811(1), 8.7856(6), 8.8370(1), respectively.

The log–log plots of M(L) at T = Tc(L, h) versus h
for h in the interval 0 ≤ h ≤ 0.0025 yield to 1/δ(L)
(Fig. 4). The straight line which fits to the plot of δ(L)
against 1/L results in the infinite-lattice critical expo-
nents δ = 3.0136(3) (Fig. 5). The result for the δ(∞) is
compared with δ = 3 which is obtained from scaling law
of Widom [35, 47, 48].

In d ≥ 5 dimensions the finite-size scaling relation for
the free-energy density is given as [33]:

fL = L−dF (tLy
∗
t , hLy

∗
h), h→ 0, L→∞, (6)

where y∗t = d/(γ + 2β) and y∗h = d(γ + β)/(γ + 2β),
with α = 2 − d/y∗t , β = d/y∗t − ∆ and γ = 2∆ − d/y∗t ,
t = (T − TC)/TC is the reduced temperature with t > 0
for T > TC and t < 0 for T < TC, h is the reduced exter-
nal magnetic field, α, β and γ are the critical exponents
for the specific heat, order parameter and the magnetic
susceptibility of the infinite lattice, respectively. Thus,

Fig. 5. The plot of δ(L) against 1/L. The extrapola-
tion of the fit lines to 1/L→∞ gives δ = 3.0067(2).

Fig. 6. Finite-size scaling plot of ML at Tc =
8.7811 (1) for 4 ≤ L ≤ 8.

fL takes the following form [16, 33, 35, 36, 49]:

fL = L−dF (tL
1

(2−α)/d , hL
(γ+β)

(2−α)/d ). (7)
According to Eq. (6), ML and χL have the scaling form

ML =
∂fL
∂h

= L−d/4X(tLd/2, hL3d/4), (8)

χL =
∂2fL
∂h2

= Ld/2Y (tLd/2, hL3d/4), (9)

where the scaling functions X and Y are obtained
from fL. These finite-size scaling relations take the fol-
lowing form T = Tc [14, 16, 35]:

Mc ∝ L−d/4, (10)

χc ∝ Ld/2. (11)
The relations for 4 ≤ L ≤ 8 can be tested by simula-
tions directly. The finite-size scaling plots for |ML(t)| and
χL(t) are given in Figs. 6 and 7, respectively. The overlap
of the plots of the scaled quantities for different L verify
the finite-size scaling relations given in Eqs. (8) and (9)
at Tc = 8.7811(1).

The slope of straight lines in Fig. 8 (Eq. (10)) for
4 ≤ L ≤ 8 give the results of d

4 = 1.2501 (1) which
is also in very good agreement with the theoretical re-
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Fig. 7. Finite-size scaling plot of χL at Tc = 8.7811 (1)
for 4 ≤ L ≤ 8.

Fig. 8. The log–log plot of Mc against L at Tc =
8.7811 (1) for 4 ≤ L ≤ 8. The slope gives d

4
= 1.2501 (1).

sult
(
d
4 = 1.25

)
. The slopes of straight lines in Figs. 9

and 10 (Eq. (11)) for 4 ≤ L ≤ 8 give the results of
d
2 = 2.5080 (1) and d

2 = 2.5005 (3), respectively, which
are also in very good agreement with the theoretical re-
sult

(
d
2 = 2.5

)
are given in Table IV.

Fig. 9. The log–log plot of χmax(L) against L at Tc =
8.7811 (1) for 4 ≤ L ≤ 8. The slope gives d

2
= 2.5080 (1).

Fig. 10. The log–log plot of χc against L at Tc =
8.7811 (1) for 4 ≤ L ≤ 8. The slope gives d

2
= 2.5005(3).

TABLE II

The values of χc and Mc obtained
at Tc = 8.7811 (1) for 4 ≤ L ≤ 8.

L χc Mc

4 1.310(3) 0.170(1)
6 3.701(1) 0.102(3)
8 7.392(4) 0.071(2)

4. Conclusions

The five-dimensional ferromagnetic Ising model is sim-
ulated on the Creutz cellular automaton algorithm by
using the finite-size lattices with the linear dimensions
L = 4, 6, and 8. In our work, the critical temperature
value of infinite lattice for 4 ≤ L ≤ 8 is in agreement with
the other simulation results. In this study, the value of
the field critical exponent (δ = 3.0067(2)) is satisfied by
scaling law of Widom. The finite-size scaling relations of
|ML(t)| and χL(t) at the infinite-lattice critical temper-
ature for 4 ≤ L ≤ 8 are verified. The exponents in the
finite-size scaling relations for the magnetic susceptibil-
ity and the order parameter at the infinite-lattice critical

TABLE III

The values of the infinite-lattice critical temperature
for 4 ≤ L ≤ 8.

Tχc Method
8.7774(35) [31] Monte Carlo

8.7812(23) [32, 33] Monte Carlo
8.778475(31) [34] Monte Carlo
8.780(10) [35] Monte Carlo
8.78(1) [36] Monte Carlo

8.77832(54) [37] series expansion
8.7769(12) [38] series expansion
8.7780(5) [39] series expansion

8.77886(77) [38, 40] dynamic Monte Carlo
8.779(8), 8.7572 [14, 26] Creutz cellular automaton
8.7811(1), this work Creutz cellular automaton
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TABLE IV

The slopes of the log–log plots of χmax, χc andMc

against L for 4 ≤ L ≤ 8.

d
2

d
2

d
4

2.5080(1) 2.5005(3) 1.2501(1)

temperature, d
4 and d

2 for 4 ≤ L ≤ 8 are in agreement
with the theoretical predictions of 5

4 and 5
2 .
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