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One-dimensional propagation of ultraslow optical pulses in an atomic Bose–Einstein condensate taking into
account the dispersion and the spatial inhomogeneity is investigated. Analytical and semi-analytical solutions
of the dispersive inhomogeneous wave equation modeling the ultraslow pulse propagation are developed and
compared against the standard wave equation solvers based upon Cranck–Nicholson and pseudo-spectral methods.
The role of curvature of the trapping potential of the condensate on the amount of dispersion of the ultraslow
pulse is pointed out.
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1. Introduction

Possibility of dramatic reduction of speed of light,
as demonstrated in an atomic Bose–Einstein conden-
sate (BEC) [1] using electromagnetically induced trans-
parency (EIT) [2], opens the way towards practical re-
alization of quantum optical information storage [3–7].
In BECs, ultraslow group velocities allow us for storage
times of coherent optical information of the order of few
microseconds. To enhance the storage capacity and du-
ration it is necessary to inject multiple pulses to be si-
multaneously present in the condensate. Major limiting
factor against this goal is the narrow EIT window and
group velocity dispersion of the slow pulses. Nowadays
the research of light propagation through the matter has
raised a lot of interest. Slow light of four different pulses
have been demonstrated experimentally and convenient
method has been found for the pulse shape in slow light
very recently [8]. The dispersion and the absorption
properties of a weak probe field in a three-level pump-
probe atomic system have been investigated recently [9].
On the other hand, slow light can be produced by non-
-EIT-based schemes [10]. Light propagation in terms of
polaritons in a medium of atoms in the tripod configura-
tion were discussed [11]. Controlling the group velocity
of the light pulses has been recently studied [12].

Propagation of the ultraslow wave packet in one-
-dimensional inhomogeneous dispersive atomic conden-
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sate can be described in terms of the slowly varying pulse
envelope [13, 14]:

∂E

∂z
+ α(z)E +

1
vg(z)

∂E

∂t
+ ib2(z)

∂2E

∂t2
= 0 , (1)

where α(z) is the pulse attenuation factor, vg(z) is the
group velocity, and b2(z) is the group velocity dispersion.
The third order dispersion is found to be much smaller
and neglected [14]. Previous studies are based upon ei-
ther analytical solutions obtained for an effective homo-
geneous region at the center of the condensate where
the dispersion is highest or numerical propagation of the
pulse with the standard methods such as the Cranck–
Nicolson or pseudo-spectral schemes [14].

Present work aims to solve Eq. (1) analytically so that
optimum experimental conditions can be efficiently de-
termined to reduce the dispersive effects to enhance co-
herent information storage capacity of the condensate.
In addition to exact analytical expressions of the pulse
envelopes, an approximate method of determination of
the pulse envelope by polynomial or Gaussian function
fitting to condensate density profile is introduced. The
density profile only contributes as an integrand to the
optical parameters so that the fitting can be done with
very high accuracy for a simple and fast evaluation of the
required integrals. Besides, the spatial dependence of the
coefficients in the wave function is due to the inhomoge-
neous condensate profile for which non-condensate, ther-
mal component makes a small contribution at low tem-
peratures. The practical semi-analytical approach out-
lined as above is tested against the Cranck–Nicolson and
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pseudo-spectral wave equation solvers and shown to be
highly efficient. The approach is employed to investigate
the effect of the curvature of the trapping potential of
the condensate, translated to the curvature of the dielec-
tric function of the condensate, on the amount of the
dispersion of the optical pulse.

The paper is organized as follows: in Sect. 2, optical
properties of an atomic BEC system under EIT condi-
tions is briefly reviewed. In Sect. 3, analytical and semi-
-analytical solutions are developed for the wave equation.
Numerical schemes used against the semi-analytical so-
lution are described in Sect. 4. Results are discussed in
Sect. 5. Finally, we conclude in Sect. 6.

2. Optical properties of an atomic BEC
under EIT conditions

Atomic condensates can be considered as two compo-
nent objects, composed of a condensate cloud in a ther-
mal background so that one can write its density being

ρ(r) = ρc(r) + ρT(r) , (2)

where [15]:

ρc(r) =
µ− V (r)

U0
Θ(µ− V (r))Θ(Tc − T ) , (3)

ρT(r) =
g3/2(z e−βV )

λ3
T

. (4)

Here U0 = 4π~2as/m, m is atomic mass, and as is the
atomic s-wave scattering length. Θ(·) is the Heaviside
step function, gn(x) =

∑
j xj/jn, λT is the thermal de

Broglie wavelength, β = 1/kBT , and Tc is the critical
temperature. We assume an external trapping potential
in the form V (r) = (1/2)m(ω2

rr2 + ω2
zz2) with ωr the

radial trap frequency and ωz the axial trap frequency in
the z direction. µ is the chemical potential. At temper-
atures below Tc, the chemical potential µ is determined
by µ(T ) = µTF(N0/N)2/5, where µTF is the chemical
potential evaluated under the Thomas–Fermi approxi-
mation. The condensate fraction is evaluated by [15]
N0/N = 1−x3−sζ(2)/ζ(3)x2(1−x3)2/5, with x = T/Tc,
and ζ is the Riemann zeta function. The scaling param-
eter s is given by s = µTF/kBTc.

EIT susceptibility [16] for an atomic BEC of atomic
density ρ can be expressed as χ(r, ω) = ρ(r)χ1(ω) with

χ1(ω) =
|γ|2
ε0~

i(Γ2/2− i∆)
(Γ2/2− i∆)(Γ3/2− i∆) + Ω2

c /4
, (5)

where ∆ = ω − ω0 is the detuning of the probe field
frequency ω from the atomic resonance ω0. Ωc is the
Rabi frequency of the control field; γ is the dipole matrix
element for the probe transition. Γ2 and Γ3 denote the
dephasing rates of the atomic coherence.

Through the atomic density, the optical response of the
atomic condensate becomes spatially inhomogeneous, so
do the parameters in the wave Eq. (1). They are deter-
mined by [17]:

α(r) = − iπ
λ

ρ(r)χ1(ω0) ,

1
vg(r)

=
1
c
− π

λ
ρ(r)

dχ1

dω

∣∣∣∣
ω0

,

b2(r) =
π

2λ
ρ(r)

(
d2χ1

dω2

∣∣∣∣
ω0

)
. (6)

Thus the spatial dependence of all the optical param-
eters comes solely from the axial density profile of the
condensate. In the following section we shall exploit the
fact that it is only the density profile that determines the
local optical properties of the condensate to develop an
exact analytical solution of the wave Eq. (1).

3. Analytical and semi-analytical methods
for ultraslow pulse propagation

For a uniform density medium Eq. (1) can be solved an-
alytically [18]. Equation (3) describes three-dimensional
atomic BEC. We need to consider the propagation of
one-dimensional optical field through the atomic BEC
being in one dimension. We consider one-dimensional
propagation by taking r = (x, y, z) = (0, 0, z). The
complex envelope of the incident wave is Gaussian pulse
E(0, t) = e−t2/τ2

0 . The initial pulse, after propagating
in the medium of length L, is then found to be de-
layed with respect to a reference pulse propagating in
vacuum by td = L/vg. The final width of the pulse
is τ(L) = τ0

√
1 + (L/z0)2, where τ0 is the initial tem-

poral width of the pulse, and z0 = −πτ2
0 /b2. For

L À z0 we get τ(L) = |b2|L/πτ0. Experimentally mea-
sured group velocity is defined by vg = L/td, where
the effective axial length of the medium is evaluated by
L = [(4π/N)

∫∞
0

rdr
∫∞
0

dzz2ρ(r, z)]1/2.
For a non-uniform medium, the wave Eq. (1) with spa-

tial dependent coefficients can be solved by using some
basic differential equation solving methods. In the typi-
cal slow light experiments a small pin hole is introduced
to couple incoming light with the condensate guide and
axial propagation is enforced. In the subsequent discus-
sions paraxial effects shall be ignored and strictly one-
-dimensional propagation will be considered by taking
r = (x, y, z) = (0, 0, z). The Fourier transforming Eq. (1)
from t space to w space gives

dE
dz

+ α(z)E − iw
vg(z)

E − w2 ib2(z)E = 0 , (7)

where E = E(z, w) ≡ (1/
√

2π)
∫∞
−∞E(z, t) exp(iwt)dt.

Solution for the equation in w space becomes

E(z, w) = E0 exp
( ∫ z (

iw2b2(z′) + iw/vg(z′)

−α(z′)
)

dz′
)

, (8)

where E0 = (1/
√

2π)
∫∞
−∞ exp(−(t − t0)2/2τ2

0 )×
exp(iwt)dt = τ0 exp(−w2τ2

0 /2). Transforming back to t
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space we find

E(z, t) =
τ0√

2f1(z)
exp

(
−

∫ z

α(z′)dz′ − f2
2 (z)

4f1(z)

)
,

(9)
where

f1(z) =
τ2
0

2
−

∫ z

b2(z′)dz′, (10)

f2(z) = t− t0 −
∫ z 1

vg(z′)
dz′. (11)

Writing the trap potential with a variable curvature
parameter κ such that V = κz2, density profile
of 1D Bose–Einstein condensate becomes ρ(z) = [(µ −
V (z))/U0]Θ(µ − κz2) + g3/2 exp(−β(κz2 − µ))/λ3

T. To
calculate the pulse envelope analytically, it is necessary
to be able to evaluate the single integral

N(z) =
∫ z

−∞
ρ(z′)dz′ = N0(z) + NT(z) , (12)

with N0(z) =
∫ z

−
√

µ/κ
ρ0(z′)dz′ and NT(z) =∫ z

−∞ ρT(z′)dz′. N0 makes the dominant contribution in
the condensate region. Let us define an auxiliary func-
tion for notational simplicity such that

F (z) =
1

λ3
T

∞∑

j=1

√
π

βκ

eβµj

j2
φ
(√

2βκjz
)

, (13)

where φ(x) = (1/
√

π)
∫ x

−∞ e−u2/2du is the normal cu-
mulative distribution function which can be expressed in
terms of a tabulated special function, error function as
φ(x) = (1/2)(1 + erf (x/

√
2)). It is now possible to ex-

press the results of the integral as follows:

N(z) =





F (z),
z < −|z0|,

2
3U0

√
µ3

κ + µz−κz3/3
U0

+ F (−|z0|),
z ∈ (−|z0|, |z0|),

4
3U0

√
µ3

κ + F (z),
z > |z0|.

(14)

Here |z0| =
√

µ/κ. Finally, we can rewrite optical pulse
parameters in terms of N(z) so that

f1(z) =
τ2
0

2
− π

2λ

d2χ1

dω2

∣∣∣∣
ω0

N(z) , (15)

f2(z) = t− t0 − z

c
+

π

λ

dχ1

dω

∣∣∣∣
ω0

N(z) , (16)

ᾱ(z) = − iπ
λ

χ1(ω0)N(z) . (17)

This completes our analytic exact solution. Though it
contains an infinite series, not all terms would be of sig-
nificance at condensate temperatures of interest. Fur-
thermore, one can still make the result of more practical
value by noting that it contains a special function. In
addition to its series and asymptotic expansions, there

are elementary, Gaussian-like functions that can be fit to
the error function. Thus these facts encourage us to look
for a semi-analytical method in which we fit polynomials
or Gaussian to the N(z). Equivalently and more sim-
ply then one can make such fits to the density profile of
the condensate. Its exact form is not essential as it only
appears as an integrand. Due to the approximate fitting
involved, this method would be a semi-analytical method
to determine the pulse envelope. After quickly reviewing
standard numerical solvers of wave equation such as the
Cranck–Nicolson and spectral methods, we shall test the
semi-analytical method against them.

4. Typical numerical methods for pulse
propagation

4.1. Crank–Nicolson method

A dimensionless form of Eq. (1) can be solved via fi-
nite difference Crank–Nicolson space marching scheme.
The Crank–Nicolson scheme is less stable but more ac-
curate than the fully implicit method; it takes the average
between the implicit and the explicit schemes [19]. Dis-
cretization is performed as follows, with i, j being the
space and time grid variables (i, j = 0, 1, . . . , N) and
E(z, t) ≡ Ei

j :

∂E

∂z
=

Ei+1
j − Ei

j

∆z
,

∂E

∂t
=

Ei
j+1 − Ei

j−1

2∆t
,

∂2E

∂t2
=

1
2(∆t)2

(
Ei

j+1 + Ei
j−1 − 2Ei

j

+Ei+1
j+1 + Ei+1

j−1 − 2Ei+1
j

)
. (18)

If we plug them into the wave Eq. (1), we get

ib2

2(∆t)2
Ei+1

j−1 +
(

1
∆z

− ib2

(∆t)2

)
Ei+1

j +
ib2

2(∆t)2
Ei+1

j+1

=
(
− 1

2vg∆t
− ib2

2(∆t)2

)
Ei

j−1

+
(

α− 1
∆z

− ib2

(∆t)2z

)
Ei

j

+
(

ib2

2(∆t)2
+

1
2vg∆t

)
Ei

j+1 . (19)

By adding the boundary conditions (in our work set as
zero: Ei

0 = Ei
N−1 = 0 for all “i”) we obtain set of N linear

equations with N unknowns, which have to be solved si-
multaneously for every space step i where the vector {E0}
is defined by initial conditions. Discrete equations in ma-
trix form are solved using the Thomas algorithm [19]
which is a fast Gaussian elimination method for tridi-
agonal matrices.



Dispersive Propagation of Ultraslow Pulses . . . 995

4.2. Pseudo-spectral method

Instead of doing a finite difference approximation in
time, we can expand the function E(z, t) in spectral se-
ries at a given position for all time values for better ap-
proximation of the time derivative. The initial value can
be used to determine the coefficients of spectral series
[20, 21]. An appropriate spectral series can be the Fourier
series. The reason we choose the Fourier series is instead
of polynomials or any other series that the derivative of
the Fourier series is just multiplication of the Fourier se-
ries with a pre-defined vector and also fast Fourier algo-
rithm makes it faster to compute the Fourier coefficients.

The initial function is divided into N points (Ej)
and discrete Fourier transform is applied in the inter-
val −N/2 ≤ k ≤ N/2− 1:

Ek = F{Ej} =
1
N

N−1∑

j=0

Ej e− i 2πkj/N (20)

for all k. We get the following ordinary differential equa-
tion:

∂E(z, k)
∂z

= −
(

α +
ik
vg
− ib2k

2

)
E(z, k) . (21)

We solve this ordinary differential equation for discrete
space intervals assuming that for each interval coefficients
are constants

E(z0 + ∆z, k) = E(z = z0, k)

× exp
(

∆z

(
−α− ik

vg
+ ib2k

2

))
. (22)

5. Results and discussion

In our numerical calculations, we specifically consider
a gas of N = 8.3 × 106 23Na atoms for which M = 23
amu, λ0 = 589 nm, γ = 2π × 10.01 MHz, Γ3 = 0.5γ,
Γ2 = 2π×103 Hz, and as = 2.75 nm. For the parameters
of the trapping potential, we take ωr = 2π × 69 Hz and
ωz = 2π × 21 Hz as in Ref. [1]. The coupling field Rabi
frequency is taken to be Ωc = 0.56γ [1]. Critical temper-
ature for the Bose–Einstein condensation of such a gas is
found to be Tc = 424 nK.

Fitting a polynomial of degree 22, pulse envelope is cal-
culated using the analytical formulae. To illustrate the
success of the fit we present the absorption coefficient in
Fig. 1 at temperature T = 42 nK. Solid line is the ex-
act analytical absorption coefficient while the dot line is
the semi-analytical result obtained after the polynomial
fit. Similar behavior occurs for b2 and 1/vg. With the
polynomial expressions of the optical parameters, the in-
tegrals required for pulse envelope functions such as f1,2

or N(z), are evaluated quickly and simply. Contour plots
of the propagating pulse are shown in Figs. 2, 3. We as-
sume a Gaussian pulse with unit amplitude of the form
exp(−(t − t0)2/2τ2

0 ) at initial time t0, where τ0 is the
pulse width.

When the optical pulse enters the condensate region,
its group speed dramatically reduces under EIT condi-
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Fig. 1. Solid line shows the position dependence of the
absorption coefficient α along the z-axis. The dot line is
polynomial fitting for the absorption coefficient and the
degree of the polynomial is 22. The ultracold atomic
system of 23Na N = 8.3 × 106 atoms at T = 42 nK
under EIT scheme. The parameters used are M = 23
amu, as = 2.75 nm, λ0 = 589 nm, γ = 2π× 10.01 MHz,
Γ3 = 0.5γ, Ωc = 0.56γ, Γ2 = 2π × 103 Hz.
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Fig. 2. Contour graph of the propagation of a mi-
crosecond pulse through the interacting BEC by semi-
-analytical method. Time (t) is scaled by 0.22 µs and
position (z) is scaled by 1 µm. The parameters are the
same with those of Fig. 1.

tions, as shown in Fig. 2. The optical pulse rapidly as-
sumes its high speeds again following the passage to the
thermal background cloud. We assumed the optical pulse
is propagating in vacuum before and after the thermal
component of the ultracold atomic system. In experi-
ment, group velocity is measured in terms of time delay
of the pulse with respect to a reference pulse which prop-
agates in vacuum over the same distance with the atomic
medium. Broadening of the pulse after leaving the con-
densate is visibly seen in the figure as it gets about almost
twice broader.

Similar behavior of the pulse but with a significant dif-
ference regarding the pulse width can be seen in Fig. 3.
The only change in the parameters used in Fig. 2 is that
now Ωc = 1.5γ. In that case the broadening and ab-
sorption becomes negligible while the pulse gets faster.
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Fig. 3. Contour graph of the propagation of a mi-
crosecond pulse through the interacting BEC by semi-
-analytical method. Time (t) is scaled by 0.22 µs and
position (z) is by 1 µm. The parameters are the same
with those of Fig. 1 except for Ωc = 1.5γ.

These results, in particular the role of the intensity of
the control field in the dispersion and loss management,
have already been discussed before in Ref. [14]. Here,
the semi-analytical method is shown to reproduce them
efficiently.

First of all, we have presented estimation for accu-
racy of the Crank–Nicolson and pseudo-spectral methods
against the exact analytical solution for a uniform den-
sity of BEC. As a further test on our numerical meth-
ods as well, we have compared the results of the Crank–
Nicolson and pseudo-spectral codes against the exact an-
alytical solution for a uniform density condensate cloud
of ρ = 1.56 × 1020 1/m3. The coefficients in Eq. (1) in
that case are found to be vg = 1.5 m/s, α = 2.1 × 103

1/m, and b2 = 3.39 × 10−8 s2/m. Initial value for pulse
width is 1 µs. The final pulse width determined according
to the Crank–Nicolson, pseudo-spectral, and completely
analytic methods are 3.3863 µs, 3.3861 µs, and 3.3869 µs,
respectively.

Secondly, to test the semi-analytical method with poly-
nomial fitting against standard numerical solvers of the
wave equation, a dimensionless form of Eq. (1) is also
solved via finite difference Crank–Nicolson (C–N) space
marching scheme and pseudo-spectral method (P-S). Fi-
nal pulse width and final amplitude determined by these
methods are listed in Table I. A microsecond pulse broad-
ens by a factor of approximately ≈ 1.7 according to both
numerical and semi-analytical methods as seen in Table I.
Similar agreement of the semi-analytical method with the
numerical results are found for the absorption loss.

We can also use Gaussian fitting functions instead of
polynomials in order to get more explicit and compact
expressions. Fitting a Gaussian to the density for the
same experimental parameters, we have found the opti-
cal parameters become

α(z) = 2.25× 10−3 exp
(
− (z − 1.5× 10−4)2

0.25× 10−8

)
,

TABLE I
Comparison of C–N, P-S, and semi-analytical (S-A)
methods. Propagation of optical pulse with initial pulse
width 1 µs and initial amplitude 1.

C–N P-S S-A
final pulse width 1.7311 µs 1.7305 µs 1.7309 µs
final amplitude 0.4755 0.4754 0.4758

b2(z) = −1.15× 10−8 exp
(
− (z − 1.5× 10−4)2

0.25× 10−8

)
,

1/vg(z) = 0.71× exp
(
− (z − 1.5× 10−4)2

0.25× 10−8

)
. (23)

Finally, reliability of the Gaussian fitting in the semi-
-analytical method is tested against spectral method
and Crank–Nicolson method as summarized in Table II
and Table III. Results obtained with numerical or semi-
-analytical Gaussian fit methods are found to be in good
agreement among themselves. Furthermore, Gaussian fit
method gives the similar results obtained with the poly-
nomial fit. This should be the case as the density only
enters as an integrand and the exact shape of the density
should not be essential to determine the optical pulse
properties. Gaussian fit method gives the final ampli-
tude and width to be 0.475 and 1.7524 µs, respectively.
In these tables we have seen that the agreement between
the semi-analytical method and the numerical methods
seems to improve as the grid made finer and finer. This
may suggest that the semi-analytical method is more ac-
curate than the standard numerical solvers. However we
are unable to give more rigorous proof for that statement
than these numerical tests.

TABLE II

Ratio of the results for pseudo-spectral method to the
semi-analytical values for the given position× time grid
dimensions.

Grid dimensions Final amplitude Final width
29 × 29 0.998 0.9993

210 × 210 0.9993 0.9997
212 × 210 0.9995 0.9998
212 × 212 0.9998 0.99991

Having analytical pulse envelope expressions or its re-
liable and compact semi-analytical form allows us to vary
controllable experimental parameters easily to optimize
pulse width, group velocity and absorption loss of the
pulse. To illustrate such optimum dispersion manage-
ment, we choose to examine the effect of the trap curva-
ture to illustrate. Effect of the control field intensity has
been numerically investigated earlier [14]. Considering
a quadratic trap as V = κz2, trap curvature is trans-
lated to the curvature of the dielectric function through
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TABLE III

Ratio of the results for the Crank–Nicolson method to
the semi-analytical values for the given position× time
grid dimensions.

Grid dimensions Final amplitude Final width
29 × 29 0.9998 0.9994

212 × 210 0.99988 0.99991
212 × 212 0.99998 0.99994

the density dependent EIT susceptibility. Typical results
obtained by the Gaussian fitting semi-analytical method
are listed in Table IV. The parameters are the same with
those of Fig. 1 and κ is in units of kg/s2. It is seen that
pulse shape is better preserved at larger κ.

TABLE IV

Dispersive propagation of optical pulse as a function of κ.

κ Final amplitude Final width [µs]
2× 10−22 0.4113 1.8916

0.5× 10−21 0.5250 1.6247
1× 10−21 0.6121 1.4612

0.5× 10−20 0.7629 1.2422
1× 10−20 0.8212 1.1741

6. Conclusion

We have discussed analytical and semi-analytical solu-
tion of the one-dimensional wave equation which governs
the propagation of an ultraslow optical pulse in a disper-
sive inhomogeneous atomic condensate. Ignoring parax-
ial effects, slowly varying pulse envelope wave equation
is solved by using Fourier transformation technique and
by using special functions, in particular, normal cumu-
lative distribution function which is related to the error
function. We have compared the results of the Crank–
Nicolson and pseudo-spectral codes against the exact an-
alytical solution for a uniform density condensate in order
to get accuracy of numerical methods.

It has been argued that, as the exact density pro-
file only enters as an integrand to the expressions, sim-
pler polynomial and Gaussian fits can be made for
more compact and simpler expressions. Such a semi-
-analytical method is heavily tested against standard nu-
merical solvers of the wave equation, namely, the Cranck–
Nicolson and pseudo-spectral methods. The results con-
firm the reliability of the compact expressions obtained
under semi-analytical method. As an illustration of the
efficiency of analytical expressions, the role of trap cur-
vature on the dispersion management has been investi-
gated. A quick calculation shows that pulse shape is
more preserved in traps with higher curvatures. Other

experimentally controllable parameters can be similarly
studied for optimized design of optical traps and EIT
conditions to efficient storage of coherent optical infor-
mation or to engineer ultraslow pulse shapes. Finally,
all numerical methods and semi-analytical method con-
clusions presented in this work can be extended to other
slow light systems and can be used for pulse shape engi-
neering.
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