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Product operator theory was often used to describe analytically multi-
pulse NMR experiments for weakly coupled spin systems. In this study first
we introduce the descriptions of subspectral editing with a multiple quantum
trap NMR spectra for IS, (I =1/2, S =5/2 with n = 1, 2, 3) spin sys-
tems by using product operator formalism. These theoretical investigations
lead us to form the general expressions for the intensities of the spin —1/2
nuclei coupled to the nuclei with spin > 5/2. The obtained results can be
used for the spectral editing in both liquid-state and solid-state NMR exper-
iments. Furthermore, in order to satisfy the obtained analytical expressions
for signal intensities we add the presentation of analytically description of
subspectral editing with a multiple quantum trap sequence for weakly cou-
pled IS (I =1/2, S =7/2) spin system.

PACS numbers: 82.56.Dj, 82.56.Jn

1. Introduction

Subspectral editing using a multiple quantum trap (namely SEMUT se-
quence) has been proposed as an alternative method for subspectral editing of
13C NMR spectra [1]. This pulse sequence has mainly two advantages. Firstly, it
contains fewer pulses than polarization technique distortionless enhancement po-
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larization transfer (DEPT) and SEMUT sequence includes quaternaries for the
determination of proton multiplicities in 13C NMR while DEPT can produce only
CH, CHs, and CHj subspectra [2]. Secondly, it is most convenient experiment to
be analyzed by using product operator theory as a simple quantum mechanical
method [3, 4]. In this framework recently, SEMUT sequence has been described
analytically for weakly coupled IS, (I = 1/2, S =1 and 3/2 with n = 1, 2, 3)
spin systems by using product operator formalism [5, 6].

On the other hand, it is a well known fact that approximately 74% of NMR,
active nuclei in the periodic table have a spin greater than 1/2. For this reason a
somewhat unusual two-spin system involving a spin S = 5/2 (or > 5/2) could be
interesting for some spectral editing experiments in particular when one considers
the solid-state analogue of the SEMUT experiment [7].

In the present work first we introduce the analytical descriptions of SEMUT
sequence for weakly coupled IS, (I =1/2, S =5/2 with n =1, 2, 3) spin systems
by using product operator theory. Furthermore, we resume the similar results for
weakly coupled 1S, (I =1/2, S>1/2;n =1, 2, 3) spin systems in Table which
includes the earlier obtained results for IS, (I =1/2, S =1/2and 3/2;n =1,2,3)
spin systems in the mentioned pulse sequence. Later we present the description of
SEMUT sequence for another weakly coupled spin system IS (I = 1/2, S =7/2)
in Appendix for the purpose of confirming the signal intensity in formed Table.

2. The evolutions of product operators under spin—spin coupling
Hamiltonian for 1S, (I =1/2, S =5/2) spin system
and application to SEMUT sequence

For the analysis of multipulse experiments by using product operator for-
malism when a spin I = 1/2 is coupled to a spin S = 5/2, under scalar coupling
it is convenient to consider the decomposition of I = 1/2 spin multiplicity into
in-phase and anti-phase coherence with the inner and outer transitions of multiplet
[4, 8-10]. This leads us to consider the operators I, I,, IS, and I, S, as some
of the product operators for IS (I = 1/2, S = 5/2) spin system. By consider-
ing the Hausdorff formula for the evolutions of the mentioned product operators
under spin—spin coupling Hamiltonian a shorthand notation can be obtained as

follows [9]:

2nJ1,5,1
—_—

1. L E;(£2)cos(bmJt) + 21,5, E;(£2)sin(bnJt)
+I1E(£2) cos(3nJt) + 21,5, Es(£5) sin(3wJt)

+I Eo(£1) cos(mJt) + 21, S Es (1) sin(wJt), (1la)
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1, TS L B (£2) cos(Brt) — 21,5, Ey(£2) sin(57J1)

+Iy Es(£2) cos(3mJt) — 21,5, Es(£5) sin(3wJt)
+Iy B (1) cos(wJt) — 21, S Es (1) sin(wJt),
o dI,8,¢ )
LS, 7 =57 LS. E;(£%) cos(bnJt) + 21, E,(£2) sin(bnJt)
+1:S. Es(£1) cos(3mJt) + 21, Es (%) sin(3w 1)
+1:S. Es(£1) cos(wJt) + LI, E(£1) sin(wJt),

2nJ1,5,t
—

1S, I,S. Es(£2) cos(bnJt) — 2, E(£2)sin(bnJt)
+1,S. Eg(£2) cos(3nJt) — 21, Es (%) sin(3wJt)

+1,S. Eg(£1) cos(mJt) — LI, E(£1)sin(wnJt),
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(1c)

(1d)

We used these expressions for the analytical description of SEMUT sequence
within the framework of product operator formalism. SEMUT sequence is shown
in Fig. 1. The numbers labelled in Fig. 1 indicate all single stages of the density

matrix operators in SEMUT pulse sequences.
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Fig. 1. SEMUT pulse sequence (7 = 1/(2J)).

Decoupling

For IS (I = 1/2, S = 5/2) weakly coupled spin system the density matrix
operators are as follows: in equilibrium state we have o9 = I, and after the first

pulse o1 = —I,. During 7 interval, the density matrix operator is
0y = — Iy Ey(£2)Csy + 21, 5.y (£2) S5
—LE(£5)Cs7 + 21, 5. Es(£2)S37
—LE(£H)Cr+ 2L, S E;(£1)Ss,
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where Cp g = cos(nwJ7) and S, 5 = sin(naJr). For 7 = 1/(2J) we take the values
C;j=C355=Cs55=0and S5y = Ss5 =1, S35 = —1 and thus o5 becomes

0y = 21,8, By(£3) — 21,5, Ey(£2) + 21,5, By(£1). (2)
Then, after the applications of (180°), and (), pulses we obtain
o3 = 2L, S. Es(£5)Cy — 21, S, E,(£2)Cy + 21, 5. Es(£1)Cy, (3)

where Cp = cos f. During 7 evolution time, we get
2w J1,5,

o T oy,
04 = %IxSZEs(:E%)CGCSJ + IyEs(i%)CQS5J
—2L.S. E(£2)CeCs5 — Iy E,(£2)CsS37

+2[xSZEs(Zl:;—)C€CJ +IyEs(Zl:%)CQSJ. (4)

By taking the values Cy = Cs35 = Cs5 = 0, S5y = Ss57 = 1 and S35 = —1 for
T =1/(2J) we get

o4 = Iy Es(£2)Cy + I, By (£2)Cy + I, E5(£1)Cy. (5)

During 7 between stages 3 and 4 in Fig. 1, relaxation and effect of chemical
shift Hamiltonian on the evolutions of product operators can be disregarded. But
during detection time, ¢, the chemical shift effect exists. As a matter of fact,
the calculation can be stopped at point four because of the density operator at
this point. On the other hand, the signal is detected from y-axis and since the
contributions to the observable signals becomes only including I, product operator
terms, the magnetization is proportional to (1), that is,

My(t) ~ (Iy) = Tr[Iyo4]. (6)

For IS (I = 1/2, S = 5/2) spin system by substituting Eq. (7) into Eq. (8) we
have the coefficients

Trlly 1, Bo(£3)] = Tl 1, Bu(£3)] = Tl [ B (£3)] = 1 (7)
Thus we obtain
(I,)(IS) = 3C5%. (8)

For ISy (I =1/2, S =5/2) spin systems by following the same calculations
steps we obtain the observable signal as

(I,)(1S2) = 18C3. (9)

In a similar way, for IS5 (I = 1/2, S = 5/2) spin system the observable
signal becomes

(I,)(IS5) = 4 x 27C3. (10)
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3. Discussion and conclusions

Considering Eqgs. (8)-(10) we can study the dependencies of observable signal
intensities on the pulse angle @ (Fig. 2). In Fig. 2 the unnormalized values are used
and if we denote the IS5, (I = 1/2, S = 5/2) spin systems as XY, (for instance,
X = 13Q), the relative intensities of 13C SEMUT NMR spectra can be observed
separately for every single group. In the case of § = 90° or 270° only quaternary
carbons are observed. From Fig. 2 it is easily seen that the relative intensities for
CY, CY5, and CY3 groups are the same at the angle 180°.

e

—>

Intensity

4_

iyt

-0. 54

-[0.84

14
Fig. 2. The plot of the signal intensities as a function of the pulse angle 6.

On the other hand, the obtained intensity values exhibit a significant pro-
portionality to the results of weakly coupled IS (I = 1/2, S=1/2and 3/2;n =1,
2, 3) spin systems by using product operator formalism in the subspectral editing
13C NMR SEMUT spectra [1, 6]. Based on this proportionality, the intensities of
the observable signals for weakly coupled half-integer spin systems are listed in
Table.

From Table, we can derive an expression between the total signal intensities
and the dimensions in the matrix representations of S spin operators as

I:n(%) cos” 0 forn=1,2 (11)
and
N n
I=(n+1) (3) cos™ @ for n = 3, (12)

where N 1s the dimension of the matrix representation of S spin operator.
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TABLE

The obtained signal intensities in the analytical descriptions of SEMUT sequence by
using product operator theory for weakly coupled 1S, (I =1/2, S =1/2,3/2,5/2,
7/2, and 9/2; n =1, 2, 3) spin systems.

Spin | Coefficients | S =1/2¢| S=3/2" | S=5/2 S=7/2 S=9/2
system

IS cos 8 1 2(=1.2) 3(=1.3) 4(=1.4) 5(=1.5)

15, cos® 8§ 2 8(=2.22) | 18(=2.3%) | 32(=2.4%) | 50(=2.5%)

1S, cos® 8 4 32(=4.27) | 108(=4.37) | 256(=4.4) | 500(=4.5")

9Taken from Ref. [1] and ®taken from Ref. [6].

As the conclusion we can express that although the spin systems involving the
spin S > 5/2 are rather unusual for the spectral editing experiments the product
operator formalism became a crucial method to describe analytically multidimen-
sional and multipulse sequences for scalar coupled spin systems in both solvent

and dilute-solids NMR.

Appendix
The analytical description of SEMUT sequence for weakly coupled
IS (I =1/2, S=17/2) spin system by using product operator theory

According to the decomposition mentioned in Sec. 1, the unitary matrix
representation of S = 7/2 spin operator can be written as

E, = E (1) + Eo(£3)+ Eo(£2) + Eo(£1), (A1)
where

100 0 0 0 0 0
00000 0 0O
00000 0 0O
00000 0 0O

Es(3) = 00 0 000 O0O0]’
00000 0 0O
00000 0 0O
00000 0 01
00000 0 0O
01 000 0 0O
00000 0 0O
00000 0 0O

Es(3) = 00 0 000 O0O0]’
00000 0 0O
00000 0 1 0
00000 0 0O
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and

O O O o O o o o
O O O o O o o o
O O O OO O = o o
O O O o O o o o
O O O o O o o o
O O = O O o o o
O O O o O o o o
O O O o O o o o

O O O o o o o
O O O o o o o
O O = O O O O
O O O o o o o
O O O o o o o

O O oo O o o o
O O O o = O o O
O O oo O o o o

0 0 0 0 0

Thus the product operator I, can be defined as

Ix:Ix®Es
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(A.2)

(A.3)

In order to express the evolutions of operator I, under spin-spin coupling

Hamiltonman, Hy = 27J1,S,, we should use the Hausdorff formula and the condi-

tions
SEEs(£3) =
STE(£3) =
STE(£3) =
STE(£Y) =

and we have

2nJI,5,t
I, " —=

B.5n=2 [ (£1), n>2,
B2 (£5), n>2,
25m 2 (£Y), n>2,

LSm=2 [ (£1), n>2,

LE,(£1)cos(TmJt) + 21,5, E;(£1)sin(TnJt)

+I E(£2)cos(bnJt) + 21,5, Es(£%) sin(57Jt)

+I1E(£2) cos(3nJt) + 21,5, Es(£5) sin(3wJt)

+I Eo(£1) cos(mJt) + 21, S Es (1) sin(wJt),

(A4)

(A.ba)
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1, TS L B (D) cos(Trt) — 21,5, Ey(£2) sin(TxJt)

+Iy Es(£5) cos(brJt) — 21,5, Es(£%) sin(57Jt)
+Iy Es(£2) cos(3mJt) — 21,5, Es(£5) sin(3wJt)
+Iy B (1) cos(wJt) — 21, S Es (1) sin(wJt),
1.g, 2rILSst ; ; s
e Sy T =5 LS. E(£L) cos(TnJt) + LI, E(£L)sin(TnJt)
+1:S. Es(£2) cos(bmJt) + 21, Es(£2) sin(57Jt)

+1:S. Es(£1) cos(3mJt) + 21, Es (%) sin(3w 1)

+1:S. Es(£1) cos(wJt) + LI, E(£1) sin(wJt),

1,8, T 1S By(£1) cos(Tat) — LI, Ey(£1) sin(7w.Jt)
+1,S. Eg(£2) cos(bnJt) — 21, Es(£%)sin(57Jt)
+1,S. Eg(£2) cos(3nJt) — 21, Es (%) sin(3wJt)

+1,S. Eg(£1) cos(mJt) — LI E (£1)sin(wJt).

(A.5b)

(A.be)

(A.5d)

By following the same procedure within the text we obtain the observable signal as

(I,)(IS) = 4Cy.
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