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Quantum many-body chaos is described as a practical (theoretical, experimental, and computational) instru-
ment in physics of mesoscopic systems of interacting particles. Using mainly nuclear physics applications, it is
shown that interactions of constituents create stationary states of high complexity with respect to the nean-field
basis with observable properties smoothly changing along the spectrum. Both local Gaussian orthogonal ensemble
type features and the global evolution along the spectrum are used to understand the many-body physics and define
thermodynamic properties of isolated mesoscopic objects. Among the examples discussed, especially interesting
is a chaotic enhancement of weak perturbations illustrated by a large parity violation in neutron resonances on
heavy nuclei. Artificially introduced chaotic elements are used to explore the nuclear landscape and predict phase
transformations.
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1. Introduction

Does quantum chaos exist? For a long time this was an
interesting pure theoretical question without clear and
conclusive answer. Roughly speaking, two schools of
thought gave their more or less persuasive answers.

The first viewpoint had more adherents. According
to this line of thinking, there exists only classical chaos
known from the Poincaré time. In the majority of re-
alistic situations (usually not discussed in the textbooks
on classical mechanics), the solutions of well known dy-
namical equations have extreme sensitivity to initial con-
ditions. Therefore the predictive power of “exact” solu-
tions is limited to the first stage of the evolution of a
dynamical system. After that even a tiny round-off error
is transformed into the exponentially growing deviation
of two phase space trajectories. The long-time evolution
of such chaotic systems can be practically described only
statistically. In quantum mechanics even the formulation
of the dynamical problem in terms of the exact phase
space initial conditions is impossible. Moreover, for any
finite number of degrees of freedom, quantum dynamics
through the Schrödinger equation is formally regular [1].
Therefore it is possible to consider only the traces of clas-
sical chaos in quantum systems which are chaotic in the
classical limit [2].

Another school of thought [3] is based on the universal-
ity and primary character of quantum laws. In this sense
the classical chaos can be only the approximate reflec-
tion of regularities existing in the quantum world. The
justification of this viewpoint can be found in theory of
random matrix ensembles [4–6]. In spite of the extremely
general character of requirements in formulation of those
ensembles, many studies of realistic quantum systems, in-
cluding those without clear classical analogs, have found
striking similarities between the predictions of random
matrix theory and actual observable properties. In fact,
we are close to reformulating the whole foundation of
statistical mechanics in terms of quantum chaos.

One of the best objects for applying the ideas of quan-
tum chaos is given by complex atomic nuclei. This is
a typical example from the mesoscopic world. In the
mesoscopic universe we have relatively small systems of
interacting constituents, where the statistical regularities
are already visible but at the same time it is possible to
study individual quantum states. It is obvious that com-
plex atoms, molecules and nuclei belong to this world,
along with natural and artificial small condensed matter
systems. Future quantum computers as systems of qubits
interacting on the atomic level also will manifest similar
properties. The goal of physics studying this world from
the viewpoint of quantum chaos is twofold: to prove that
indeed we have quantum chaos in its different manifesta-
tions and, which is probably more important, to convert
the ideas of quantum chaos in a powerful working instru-
ment.

The first goal was achieved already about twenty years
ago, after studies of the so-called Nuclear Data Ensem-
ble [7] and much more detailed analysis of spectroscopy
of complex atoms [8] and nuclei [9, 10]. Below I will give
convincing examples from nuclear physics. The second
goal is a subject of current work and I will try to show
that indeed quantum chaos can be used in nuclear physics
problems as a theoretical, experimental, and computa-
tional tool.

2. Nucleus as a testing ground of quantum chaos

Considering a complex nucleus as a finite Fermi sys-
tem with strong interactions between the particles living
in a mean field we expect that the simple combinatorics
of particle–hole excitations lead, already at not very high
excitation energy, to large density of many-body quan-
tum states. Then the residual interactions become effec-
tively strong bringing the full mixing of various config-
urations. If so, the stationary eigenstates are expected
to be very complicated superpositions when expressed in
the basis of simple mean-field excitations.
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Local spectral statistics is the first appearing and in
some sense the weakest signature of quantum chaos. It
is predicted in random matrix theory [6, 11] that the
distribution of the nearest level spacings generated by a
time-reversal invariant Hermitian Hamiltonian is given
(approximately but with high precision) by the Wigner–
Dyson formula for the Gaussian orthogonal ensemble
(GOE):

P (s) =
πs

2
e−(π/4)s2 , (1)

where s is the level spacing in units of the average local
spacing. It is important to guarantee that all levels un-
der consideration belong to the same class in the sense of
the exact constants of motion (in nuclei total spin, par-
ity, and isospin). The linear level repulsion at small dis-
tances, P (s) ∝ s, follows from elementary arguments but
changes by the quadratic repulsion in the case of viola-
tion of time-reversal invariance (T ). In practice it is very
hard to use this prediction for the search of T -violation
because of low statistics of small spacings.

Fig. 1. The level spacing distribution for the lev-
els JΠ = 0+ in the sd-shell model calculation for
28Si [9]. The parameter λ artificially scales all off-
diagonal matrix elements of the many-body Hamilto-
nian. The value λ = 0 gives the mean-field approxima-
tion with diagonal matrix elements of the residual inter-
action added in order to remove abundant degeneracies;
λ = 100% corresponds to the realistic strength.

The shell-model calculations (exact diagonalization of
the full realistic many-body Hamiltonian in the truncated
orbital space, in this case the sd-model) show, Fig. 1,
that the characteristic distribution (1) emerges already
at a relatively weak interaction strength (0.3 of its realis-
tic value). It is necessary to stress that the used version
of the shell model was successfully tested by hundreds
of data on energy spectra, transition rates and other ob-
servables, so that one can hope that its predictions for
high lying nuclear levels are rather reliable, at least in the
average sense. Multiple consecutive avoided crossings of
levels with the same exact quantum numbers quite nat-
urally establish the “aperiodic crystal” of more or less
ordered mutually repelling levels satisfying the distribu-
tion (1). Continuing the evolution of the strength λ to its
realistic value, very soon we see [12] that a more detailed
prediction, that of the curvature distribution of the levels
E(λ), comes to a good agreement with the GOE results.

More information concerning the dynamics one can ob-
tain studying the so-called ∆3 statistics that character-

izes the spectral rigidity. This quantity is defined as an
average fluctuation of the mean value of the level number
in a certain interval of energy,

∆3(L) =
1

L
min
a,b

∫ x+L

x

dε [N (ε)− aε− b]2
x

. (2)

Here the levels are “unfolded” into a constant mean spac-
ing, while the average is taken over the moving energy
window of width L. In fact, the quantity (2) is de-
termined for a given realization of a random ensemble
and as such has its own distribution forming a band,
Fig. 2. Using such an ensemble one can simulate the po-
sition and the width of this band [13] in the situations
of (i) erroneously mixed states which belong to different
classes of quantum numbers and/or (ii) of missed levels
of a given sequence. Such a statistical analysis for the
low-energy neutron resonances in 235U has shown that
approximately 4% of the s-wave resonances were miss-
ing in the experiments. Another conclusion was that
the experiments which do not select a certain value of
the compound nucleus spin and therefore can populate
both J = 3 and J = 4 resonances in 236U give rise to
the ∆3 statistics that indeed correspond to the expected
statistical ratio 7/9 of the population for these two sub-
sequences.

Fig. 2. Bands of spectral rigidity corresponding to a
pure sequence and to mixed levels belonging to two fam-
ilies with statistical ratio 0.4 of multiplicities [13].

Of course, the question of the quality of agreement
of experimental spectra with the GOE predictions has
to be decided by the experiment. Assuming that this
agreement indeed takes place, one can use the GOE as
an experimental tool for discovery of the fine structure
levels invisible in the experiments with poor resolution.
An impressive example was given by the analysis [14]
of the electron scattering off the 208Pb nucleus in the
region of the giant quadrupole resonance. The missing
strength was recovered by a very complicated statistical
analysis (two independent procedures which well agree in
the end) assuming the existence of hidden levels which
approximately obey the GOE statistics.
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3. Global level density

It is stressed usually that statistical properties of quan-
tum chaos are local since the application of the GOE to
the spectrum as a whole leads to the unphysical semicir-
cle shape of the energy spectrum. Therefore, for example,
the spectral rigidity mentioned above makes sense only
after the procedure of unfolding. However, the global
behavior of the level density is an integral part of any
practical calculation of reaction cross-sections, including
technological and astrophysical applications. The pres-
ence of quantum chaos with its exceedingly complicated
stationary wave functions cleans the way to the predic-
tion of the level density on a global scale. The practical
algorithm [15, 16] is based on the methods of statistical
spectroscopy [17, 18] that, in turn, can be justified only
by the presence of quantum chaos.

The scheme of level density calculations goes as fol-
lows. The orbital space is divided into partitions (vari-
ous distributions of particles over orbitals); in the typical
shell-model versions the orbitals are single-particle states
in a spherical mean-field potential. Let the dimension
of a subspace with conserved given many-body quantum
numbers α for a given partition p be Dαp. Then the level
density ρα(E) with fixed global quantum numbers α is
calculated in a function of energy E as

ρα =
∑
p

DαpGαp(E). (3)

Here Gαp(E) is the Gaussian function whose centroid
Eαp and the width σαp are determined as the lowest sta-
tistical moments of the shell-model Hamiltonian,

Eαp = 〈H〉αp =
1

Dαp
Tr(αp)H (4)

and

σ2
αp = 〈H2〉αp − E2

αp ≡
1

Dαp
Tr(αp)H2 − E2

αp, (5)

where the traces are taken over the matrix elements of the
Hamiltonian for a given partition and then summed in
Eq. (3) over partitions. The calculations are feasible be-
cause there is no diagonalization required, the results can
be obtained directly from the original matrix, although
the derivation of the second moment is rather cumber-
some since it includes the matrix elements including dif-
ferent partitions. Higher moments can be calculated in a
similar way [17] but it turned out that they are essentially
not needed.

The calculations include some technical details neces-
sary for obtaining good results. The Gaussians are mod-
ified by introducing the finite range and corresponding
renormalization. This cut-off at approximately 3σ is mo-
tivated by the experience in studying the strength func-
tions [19] from the viewpoint of quantum chaos. If the
orbital space includes cross-shell transitions, one needs
to eliminate the spurious states related to unphysical ad-
mixtures of the center-of-mass motion. A special proce-
dure for this removal was worked out [15]. One has also
to mention the problem of the ground state energy that
should be known in order to set the whole picture on

the correct energy position. There are various practical
methods of finding just the ground state energy in each
class of states. The chaotic dynamics supplies us with the
exponential convergence procedure: it was shown that,
for a too large Hamiltonian matrix, after few steps of
explicit calculations with a gradually progressing trunca-
tion [20], the virtual admixed states are taken from the
chaotic region, and the ground state energy (as well as
some global observables for this state) can be continued
exponentially to the exact result.

To illustrate how the method of moments works, I show
three typical calculations. Figure 3 demonstrates the
practically perfect agreement of the total level density
found in this statistical approach with the result of the
exact numerical diagonalization possible in this specific
case. This agreement holds in each class of states with
given JΠT quantum numbers. It also agrees with the
low-energy experiments in the cases where the sufficient
wealth of reliable data with known quantum numbers of
levels is available and we have an appropriate tested ver-
sion of the shell model. A small deviation in the center of
the spectrum can be corrected by the fourth moment of
the Hamiltonian but anyway such a high excitation en-
ergy is outside of the region where the truncated space of
the sd-model can aspire to describe the full spectroscopy.

Fig. 3. Comparison of the total level density calculated
by the method of moments for 28Si in the sd-model with
the exact numerical diagonalization.

The standard mean-field combinatorics [21] predicts
the level density far from the monotonous increase as a
function of energy. The mean-field partitions and pairing
effects accounted for in various approaches to this prob-
lem strongly modulate the predicted level density, Fig. 4.
In contrast to that, the statistical procedure, properly
taking into account all shell and pairing effects, produces
a smooth curve after including “non-pairing” matrix el-
ements physically corresponding to incoherent collision-
like interactions.

Figure 5 describes the evolution of the level density
under influence of such parts of the interaction. Here the
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Fig. 4. Comparison of the level density in the method
of moments to the results of the mean-field combina-
torics [20].

Fig. 5. The influence of various components of the in-
teraction onto the level density. At the pairing strength
fixed at its empirical value, consecutive curves reflect
the effect of increasing the strength of the non-pairing
matrix elements.

shell-model Hamiltonian is presented as
H = Hmeanfield + k1Vpairing + k2Vnon−pairing. (6)

The equal importance of different parts of the Hamilto-
nian in formation of the final level density is clear. In
fact, the pairing itself has, at high level density, some
chaotic features [22, 23]. However, they are not sufficient
for full chaotic mixing of close in energy wave functions.
The irregularities of the level density are almost com-
pletely smoothed over in the final level density for the
full realistic interaction.

4. Complexity of wave functions

The exceedingly complicated nature of the stationary
wave functions in the domain of quantum chaos, that ac-
tually starts at relatively low excitation energy, around
3–4 MeV in even–even medium nuclei and even earlier in
heavy and odd-A nuclei, makes possible to understand
and in many cases predict some nontrivial physical phe-
nomena.

It was anticipated long ago [24] that chaotic wave func-
tions in a given energy window “look almost the same”.
Here an important caveat is that, in contrast to the
eigenvalue statistics, the standard measures of complex-
ity are representation-dependent. The frequently used
information (Shannon) entropy of individual stationary
states |α〉,

Sα = −
∑
k

wαk lnwαk , (7)

quantifies only the mutual relation between the basis
states |k〉 and the eigenstates of the Hamiltonian

|α〉 =
∑
k

Cαk |k〉, wαk = |Cαk |2. (8)

Still one can argue that if the mean field and correspond-
ing basis |k〉 are found self-consistently, the main differ-
ence of basis states and the majority of genuine station-
ary states (leaving aside few really collective states) is
just due to the chaotic mixing, and therefore the mea-
sure (7) indeed reflects the degree of chaotization. The
shell model calculations confirm the Gaussian distribu-
tion of amplitudes (the Porter–Thomas distribution of
probabilities wα) and absence of correlations between in-
dividual components. This was used in the mentioned
above analysis [14] of the fine structure invisible in the
experiments with insufficient resolution. In the center of
the spectrum the entropy (7) is even numerically close to
the GOE limit although usually does not quite reach this
limit. In fact, many properties follow from the central
limit theorem and do not require exact GOE character-
istics.

Fig. 6. Information entropy of the states in 12C nu-
cleus in the shell model incorporated cross-shell transi-
tions while the spurious center-of-mass excitations are
artificially shifted to high energy.



1012 V. Zelevinsky

The basis-dependent information entropy (8) turns out
to be a smooth function of the excitation energy of states
|α〉. It is smart enough, for example, to demonstrate,
Fig. 6, the appearance of a new branch of states with ex-
actly the same degree of complexity but shifted to high
energy. This happens in the versions of the shell model
where the spurious center-of-mass excitations are deliber-
ately moved to high energy and emerge there as another
branch of the spectrum with the same degree of complex-
ity as that of the previously found background structure.

5. Chaotic enhancement of perturbations

This is probably the most unexpected and practically
important aspect of applications of ideas of quantum
many-body chaos. It is clear that, due to the very high
level density, the mixing of the levels by physical pertur-
bations should be quite different from that in a low-lying
energy region. The first impression might be that such
a mixing is hardly probable because of absolutely uncor-
related structure of very complicated states adjacent in
energy. This is however not the case. We can go through
a very crude estimate.

Let an unperturbed state |α〉, Eq. (8), have a very large
number, N � 1, of principal basis components |k〉. We
assume that the perturbation acts as a simple one- or
two-body operator Q̂, for example a multipole operator.
Such operators, because of selection rules, have a finite
(rather small) number n of non-zero matrix elements be-
tween the basis states with a characteristic value q of
these matrix elements. Since the typical amplitudes Cαk
are of the order of 1/

√
N , the matrix element between

the complex and basis states can be estimated as

〈k|Q̂|α〉 =
∑
l

Cαl Qkl '
qn√
N
. (9)

In the same way, the matrix element between two chaotic
states close in energy (and therefore of the same degree
of complexity N) is evaluated by order of magnitude as

〈β|Q̂|α〉 =
∑
αβ

Cβ∗k Cαl Qkl '
qn√
N
, (10)

where we took into account that one summation is taken
care of by the estimate (9) and another one, due to the
chaoticity of signs of the amplitudes C, gives the factor√
N instead of N .
Thus, the matrix elements of simple operators be-

tween close chaotic states are suppressed only by a fac-
tor 1/

√
N . But we are interested in the response of the

system in the region of very high level density. The typ-
ical level spacings are here smaller by a factor of ∼ N
compared to the region of low-lying “simple” states. As a
result, the mixing of complicated states is predicted to be
enhanced by a factor ∼

√
N . Such estimates apparently

were first suggested by Blin-Stoyle [25] and, in more de-
tailed form, by Sushkov and Flambaum [26], specifically
for the enhancement of parity violation in nuclei.

Parity violation in nuclei occurs due to the weak forces
between the nucleons. The effective interaction in the

mean field description is given by the “simple” local op-
erator proportional to Gρ(r)(σ ·p), where G is the Fermi
constant, ρ(r) — local nuclear density and p — the nu-
cleon momentum operator. On the level of simple mean-
field states this operator mixes single-particle orbitals of
opposite parity providing the parity violating admixture
of the order 10−7 or 10−8. A very large parity viola-
tion, up to 10% in some cases, was observed in the res-
onance scattering of longitudinally polarized neutrons in
Dubna [27] and Los Alamos [28]. The ratio

P =
σ+ − σ−

σ+ + σ− (11)

for corresponding cross-sections should vanish if the par-
ity is strictly conserved. In Fig. 7 we see a very large ef-
fect at a resonance En = 63.5 eV in 238U. At the neutron
resonance energy, the complexity parameter N ≈ 106 so
that we expect the enhancement

√
N ≈ 103. In addi-

tion, the so-called kinematic factor leads to the further
enhancement, the ratio of the partial neutron widths for
the mixture of the p- and s-resonances, Γs/Γp ≈ 103. Al-
together we have the enhancement by 6 orders of magni-
tude that allows one to see the parity violation by naked
eye, Fig. 7.

Fig. 7. The ratio P for cross-sections σ± in the res-
onance scattering of neutrons with opposite helici-
ties [28]. The right column gives P for different reso-
nances in 238U.

Another observable, the asymmetry of the motion of
the fission fragments with respect to the spin of the ini-
tial neutron, was even more unexpected [29]. This asym-
metry in the experiment is enhanced “only” by 3–4 or-
ders of magnitude being of the same magnitude as some
asymmetries allowed by parity conservation (here there
is no kinematic enhancement). The adiabatic process of
neutron fission goes through a pear-shaped configuration
that corresponds, with parity conserved, to parity dou-
blets. A small parity violation makes the doublet com-
ponents not equivalent creating a fragment asymmetry
which is enhanced by the chaotic mechanism. This can
happen only at the “hot stage” of the reaction where the
strong mixing is active. The further evolution to the scis-
sion point preserves the asymmetry. Then one can make
a crucial prediction that the parity violation cannot de-
pend on the details of mass distribution or division of
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kinetic energy between the fragments — these character-
istics are decided later. The Grenoble experiments [30]
clearly show that the asymmetry on the level of 10−3 or
10−4 indeed is practically constant for all numerous fis-
sion channels: the enhancement is predetermined by the
chaotic stage being independent of what happens later in
the fission process, Fig. 8.

Fig. 8. The asymmetry of fragments in fission of 233U
by cold polarized neutrons, ∝ (σn ·pfragment), according
to Ref. [30] is constant for different channels (mass and
total kinetic energy distributions).

Qualitatively similar enhancement effects work in
many other situations, for example, in mixing of su-
perdeformed bands with bands of “normal” deformation
[31–33]. This physics also defines the excitation energy
of structure isomers that would allow their mixing with
other states and trigger their decay [34].

6. Chaos and thermalization

From the first years of nuclear physics, highly excited
nuclear states have been discussed not in terms of in-
dividual wave functions but rather using the ideas and
terminology of statistical physics and thermodynamics
(temperature, entropy, evaporation etc.). Are those two
languages mutually exclusive? Complementary? Equiv-
alent?

The rich experience of the last two decades allows us to
start a reasonable discussion of these questions. One ob-
stacle on this path is a standard prejudice that the ther-
modynamic description is valid only on a macroscopic
scale that corresponds to the so-called thermodynamic
limit of large volume and large particle number with their
ratio (density) fixed. On the other hand, we can look
carefully at the statistical results for the set of individual
stationary wave functions in the exact shell-model calcu-
lations. Of course, the properties of the system which
are statistical by their construction, as the global level
density, are smooth functions of energy and maybe of

other constants of motion. But we immediately see also
that such characteristics of the eigenstates as, for ex-
ample, information entropy, found not globally but for
each individual state, are very smooth functions of exci-
tation energy. Therefore they can be considered as ther-
modynamic variables uniquely defined up to fluctuations
which, indeed, depend on the dimension of space.

This is an appropriate moment in order to apply to
classics of theoretical physics. In the book of Statistical
Physics by Landau and Lifshitz [35] we read: “It may
again be mentioned that, according to the fundamental
principles of statistical physics, the result of the aver-
aging is independent of whether it is done mechanically
over the exact wave function of the stationary state of
the system or statistically by means of the Gibbs distri-
bution. The only difference is that in the former case the
result is expressed in terms of the energy of the body,
and in the latter case as a function of its temperature”.
This point of view was developed in the detailed practi-
cal analysis of spectra for complex atoms [8], nuclei [9],
and matrix models [36]. The mechanism that allows us
to obtain the equivalent information from a typical (but
very complicated) wave function is quantum chaos that
makes all individual states in some energy interval “look
the same” [24, 37–40]. In the recent literature, this idea
sometimes is called the eigenstate thermalization hypoth-
esis.

Here I give just an example of how thermodynamic
ideas and corresponding instruments agree with the re-
sults of the exact solution of the quantum many-body
problem for a mesoscopic system, such as an atomic nu-
cleus. The level density found by the full diagonalization
in a truncated space or with the help of the method of
moments reveals a very fast growth to the centroid and
then almost symmetric fall. Here one can define a global
thermodynamic temperature as

Tth =

(
d ln ρ(E)

dE

)−1

, (12)

essentially through thermodynamic entropy Sth = − ln ρ.
For the curve ρ(E) close to the Gaussian with a width
σE , this temperature goes from positive to negative in-
finity at the centroid E = Ec,

Tth =
σ2
E

E − Ec
. (13)

Other definitions of the effective temperature are also
possible. Assuming the Landau ideology of Fermi-liquid,
we can consider the system as a conglomerate of fermionic
quasiparticles distributed over orbitals with energies εi
according to

nαi =
1

1 + exp
(
(εi − µα)/Tαs.p.

) , (14)

where we calculate the occupancies nαi for each individ-
ual eigenstate |α〉 and try to fit the chemical potential
µ and the effective single-particle temperature Ts.p. for
each state separately in order to extract the evolution
of these thermodynamic parameters along the spectrum
of the system. Finally it is also interesting to find the
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effective information entropy (7) and corresponding in-
formational temperature similarly to Eq. (12),

Tαinf =

(
dSα

dE

)−1

, (15)

again for each individual stationary state |α〉.
The analysis shows that all definitions of temperature

as a function of excitation energy practically coincide if
we use the appropriate scales (“thermometers”). For ex-
ample, the two lines for positive and negative thermo-
dynamic temperature branches, Eq. (13), are indeed the
loci of the points corresponding to quasiparticle temper-
atures extracted according to Eq. (14) for all individual
states (the chemical potential is almost constant), Fig. 9.

Gaussian level density

839  states  (28 Si) J=0

Fig. 9. Effective temperature Ts.p. of individual states
J = 0 in the shell model calculation, see Eq. (13), for
28Si, dots, and the global thermodynamic temperature
Tth, lines, found from the level density.

It is necessary to stress that the agreement of compar-
isons analogous to that in Fig. 9 can be easily destroyed
by the choice of a wrong thermometer. It was said al-
ready that the information entropy and therefore temper-
ature characterizes our system with respect to a selected
basis of our representation. The thermodynamic defini-
tion (12) is basis-independent. The convincing agreement
of different definitions, as in Fig. 9, corresponds to the
empirical shell-model mean field and the residual interac-
tion consistent with this field. If the residual interaction
is made “by hand” much stronger, the quasiparticle evo-
lution in the spirit of the Fermi liquid disappears, and the
system essentially is all the time heated to infinite tem-
perature. However the possibility to vary the interaction
and to study the change of dynamical features can also
be instructive as we briefly explain in the next section.

7. Artificial chaos
New theoretical tools appear along with the possibility

to randomize the Hamiltonian in order to better under-
stand the effects of its different parts in their common
action. A very promising tool can be formulated in terms
of correlational entropy [41].

For any eigenstate |α〉 we define its density matrix ρα,
(ρα)kl = Cα∗l Cαk , (16)

so that the expectation value of any operator Q̂ in the
state |α〉 be

〈α|Q̂|α〉 =
∑
kl

Cα∗l CαkQlk = Tr(Qρα). (17)

Here the result is invariant with respect to the choice of
the original basis but does not provide any new informa-
tion. Now we redefine the density matrix as an average
over some random ensemble,

(ρα)kl ⇒ Cα∗l Cαk , (18)
but still for a given state |α〉 that can be followed continu-
ously varying the ensemble parameters. While the trivial
matrix (16) had eigenvalues equal to 1 for the state |α〉
and 0 for any orthogonal state, the new matrix (18) has
eigenvalues between 0 and 1 and can be diagonalized in
its own eigenbasis (canonical, or pointer basis).

For the new density matrix we can define the new en-
tropy,

Sαcorr = −Tr ln ρα, ‘ (19)
again for any specific state. This member of the broad
entropy family is invariant under basis transformation.
In distinction to the previous entropies discussed in our
thermodynamic part this quantity shows the response of
the system to the parameter variations. There is a great
freedom in formulating wise questions and try to answer
them with the specific choices of the ensemble for this
purpose. The simplest and physically clearest way is to
vary randomly the parameters of a realistic Hamiltonian
and look for the signatures of possible phase transitions
in the structure of the system. If the artificial chaotic en-
semble contains variables randomly covering the region
of structural changes, the fluctuations grow, and the cor-
relational entropy (19) obediently displays a maximum
that gives the signal of restructuring.

In this way we have studied the interplay of the stan-
dard isovector pairing competing with the quasideuteron
isoscalar pairing in sd-nuclei [42]. The correlational en-
tropy in the ground state of the nucleus reveals a typical
maximum at the values of the isoscalar pairing constant
that are approximately three times greater than what
we have in a realistic Hamiltonian. The conclusion is
that the quasideuteron correlations which are certainly
present in light odd-odd nuclei give way to the normal
pairing in heavier, especially even-even, nuclei.

Making matrix elements of the residual interaction (all
or some of them) random quantities, we can find the
ranges of the parameters responsible for specific observ-
able properties. In this way, the question of the predomi-
nance of prolate deformation in nuclear ground states was
studied [43] (among stable nuclei there is just one case,
12C, that shows up oblate deformation, mainly due to the
admixtures of 3α cluster structure). Among the guilty
matrix elements (in the pf -shell) are those which mix the
p and f -orbitals in the nuclei before the midshell creating
prolate deformation through populated levels with small
angular momentum projection onto the symmetry axis.
In the end of the shell the orbitals with large projections
and therefore preferred oblate deformation would be en-
ergetically favorable but they are defeated by the levels
coming from upper shells.
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Such methods of introducing the artificial chaos and
trying to understand emerging physics still leave unan-
swered several profound questions. One of them is re-
lated to an accidental discovery [44] that the rotationally
invariant residual interactions with random by magni-
tude matrix elements produce predominantly the ground
state of zero total spin. This happens in spite of a rather
low fraction of zero-spin states in the total Hilbert space:
the ensemble averaging prefer the lowest symmetry of
angular momentum coupling. Here we deal with the
new element of the whole theory of quantum chaos —
correlations of subensembles of states with different val-
ues of constants of motion but governed by the same
many-body Hamiltonian. The idea that the mean field
arises from the chaotic interactions accumulating the reg-
ular features of the dynamics [45–47] provides some un-
derstanding to this set of observations but still leaves
many questions not answered, especially about consider-
able probability of typical collective phenomena (vibra-
tions and rotations) appearing from random interactions
with rather high probability.

8. Conclusion

The short journey through the chaotic jungles of
nuclear many-body physics has shown that the ideas
of quantum chaos bring new instruments to serve the
progress of our understanding. These ideas were first
born in relation to the nuclear problems and then pen-
etrated the quantum physics in general, especially the
mesoscopic domain.

We tried to demonstrate with typical examples that
physics of quantum chaos became really much more rich.
We can recall experimental tools (extraction of invisible
fine structure in experiments with insufficient resolution),
computational methods (method of moments for find-
ing the global level density, exponential convergence of
ground state energy and other observables, exploration
of the many-body landscape with random interactions,
etc.), new theoretical approaches (thermalization of small
isolated systems, chaotic enhancement of weak perturba-
tions, artificial chaos etc.). Many questions are still not
fully understood and future work in these directions is
absolutely necessary.

Almost completely left outside of this story is the chap-
ter on quantum chaos in reactions and continuum states
which were mentioned only in the section on level density
and in explanation of the processes with strong parity vi-
olation. This part requires a detailed explanation on its
own, starting from the Bohr concept of compound nuclei.
The statistical search for the invisible fine structure states
requires in fact two conditions: the spacing D should be
not only small compared to the energy resolution of the
experiment but, on the other hand, it should be large
compared to the typical decay widths Γ of the contin-
uum states contributing to the giant resonance. Very
new physics related to overlapping resonances emerges
in the opposite limit of Γ ≥ D and different terminology

becomes necessary (statistics of lifetimes, superradiance,
transmission, cross-sections and so on). Many results
turn out to be common for nuclear physics and condensed
matter physics of disordered materials [48]. Here I limit
myself with few references [49–56].
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