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A simple effective model of charge ordered insulators is studied. The tight binding Hamiltonian consists of
the effective on-site interaction U and the intersite density-density interactions Wij (both: nearest-neighbour and
next-nearest neighbour). In the analysis of the phase diagrams we have adopted the variational approach, which
treats the on-site interaction term exactly and the intersite interactions within the mean-field approximation. The
phase separated states have not been taken into account in previous analyses. Our investigations of two cases
of the on-site interaction: attraction (U/(−WQ) = −10) and repulsion (U/(−WQ) = 1.1) show that, depending
on the values of the next-nearest neighbour attraction, the system can exhibit not only homogeneous phases:
charge ordered and nonordered, but also various phase separated states (charge ordered–nonordered, charge
ordered–charge ordered).

PACS numbers: 71.10.Fd, 71.45.Lr, 64.75.Gh, 71.10.Hf

1. Introduction

Electron charge orderings phenomena are currently un-
der intense investigations, because they are relevant to a
broad range of important materials such as manganites,
cuprates and organic conductors [1–5]. In this paper we
will discuss an effective model of charge ordered insula-
tors.

The Hamiltonian considered has the following form:

Ĥ = U
∑

i

n̂i↑n̂i↓ +
W1

2

∑

〈i,j〉1
n̂in̂j +

W2

2

∑

〈i,j〉2
n̂in̂j

−µ
∑

i

n̂i , (1)

where ĉ+
iσ denotes the creation operator of an electron

with spin σ at the site i, n̂i =
∑

σ n̂iσ, n̂iσ = ĉ+
iσ ĉiσ, U is

the on-site density interaction, W1 and W2 are the inter-
site density density interactions between nearest neigh-
bours and next-nearest neighbours, respectively. µ is the
chemical potential, depending on the concentration of
electrons

n =
1
N

∑

i

〈n̂i〉 , (2)

with 0 ≤ n ≤ 2 and N is the total number of lattice sites.
The interactions U and Wij will be treated as the ef-

fective ones and will be assumed to include all the possi-
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ble contributions and renormalizations like those coming
from the strong electron–phonon coupling or from the
coupling between electrons and other electronic subsys-
tems in solid or chemical complexes. In such a general
case arbitrary values and signs of U and Wij are impor-
tant to consider.

We have performed extensive study of the phase dia-
grams of the model (1) for arbitrary n [6, 7]. In the anal-
ysis we have adopted a variational approach (VA) which
treats the on-site interaction U exactly and the inter-
site interactions (Wij) within the mean-field approxima-
tion (MFA). Within such an approach the phase diagrams
of (1) have been investigated till now for the special case
W2 = 0 only [8, 9].

In the following we will restrict ourselves to the case
of repulsive W1 > 0 and attractive W2 < 0. We consider
only two-sublattice orderings on the lattice consisting of
two interpenetrating sublattices such as for example sc
or bcc lattices.

Within the VA the intersite interactions are decoupled
within the MFA, which allows us to find a free energy
per site f(n). The condition (2) for the electron concen-
tration and a minimization of f(n) with respect to the
charge-order parameter lead to a set of two self-consistent
equations (for homogeneous phases), which are solved
numerically. The charge-order parameter is defined as
nQ = (1/2)(nA − nB), where nα = 2

N

∑
i∈α〈n̂i〉 is the

average electron density in a sublattice α = A, B. If nQ

is non-zero the charge-ordered phase (CO) is a solution,
otherwise the non-ordered phase (NO) occurs.

(350)
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Phase separation (PS) is a state in which two domains
with different electron concentrations exist in the system
(coexistence of two homogeneous phases). The free ener-
gies of the PS states are calculated from the expression:

fPS(n+, n−) = mf+(n+) + (1−m)f−(n−) , (3)
where f±(n±) are values of a free energy at n± corre-
sponding to the lowest energy homogeneous solutions and
m = n−n−

n+−n−
is a fraction of the system with a charge den-

sity n+. We find numerically the minimum of fPS with
respect to n+ and n−.

In the model considered only the following PS states
can occur: PS2 is a coexistence of CO and NO phases
and PS3 is a coexistence of two CO phases with different
concentrations (and charge-order parameters).

In the paper we have used the following convention.
A second order transition is a transition between homo-
geneous phases with a continuous change of the order
parameter at the transition temperature. A transition
between homogeneous phase and PS state is symboli-
cally named as a “third order” transition. During this
transition a size of one domain in the PS state decreases
continuously to zero at the transition temperature. We
also distinguished second order transition between two
PS states, at which a continuous change of the order pa-
rameter in both domains takes place.

Second order transitions are denoted by solid lines on
phase diagrams and dashed lines correspond to the “third
order” transitions. We introduce also the following deno-
tation: WQ = −z1W1 + z2W2, where z1 and z2 are num-
bers of nearest and next-nearest neighbours, respectively.

The obtained phase diagrams are symmetric with re-
spect to half-filling (n = 1) because of the particle–hole
symmetry of the Hamiltonian (1), so the diagrams will
be presented only in the range 0 ≤ n ≤ 1.

2. Results and discussion

Examples of the kBT vs. n phase diagrams evalu-
ated for U/(−WQ) = −10, W1 > 0 and various ratios of
k = z2W2/z1W1 ≤ 0 are shown in Fig. 1. If 0 ≤ |k| < 1
the CO and NO (homogeneous) states are separated by
the second order transition line.

When −0.6 < k < 0 a “third order” transition takes
place at low temperatures, leading first to PS into two
coexisting CO phases (PS3), while at still lower tem-
peratures CO and NO phases coexist (PS2). The crit-
ical point (denoted as B) for this phase separation is
located inside the CO phase. The E–F solid line is asso-
ciated with continuous transition between two different
PS states (PS2–PS3, the second order CO–NO transition
occurs in the domain with lower concentration).

For k < −0.6 the transition between PS states does not
occur, the area of PS3 stability vanishes and the critical
point for the phase separation (denoted as T ) lies on the
second order line CO–NO. As k → −∞, T -point occurs
at n = 1 and the homogeneous CO phase does not exist
beyond half-filling.

Fig. 1. Phase diagrams kBT/(−WQ) vs. n for
U/(−WQ) = −10, W1 > 0 and k = z2W2/z1W1 =
0,−0.2,−0.6,−1 (as labeled). Solid and dashed lines
indicate second order and “third order” boundaries, re-
spectively.

When k = −0.6 the lower branch of the “third or-
der” curve approaches the critical point (H) paraboli-
cally. H-point is a higher order critical point and at this
point the lines consisting of E, F and T points connect
together.

For U/(−WQ) = 1.1 sequences of transitions are sim-
ilar to the previous case (for corresponding values of k),
but now the phase diagrams are (almost) symmetric with
respect to quarter-filling (n = 0.5). B′, H ′, T ′, E′ and
F ′ points (as well as B′′, H ′′, T ′′, E′′, and F ′′ points)
appear, which correspond to B, H, T , E, and F points,
respectively. The obtained phase diagrams are shown in
Fig. 2.

Fig. 2. Phase diagrams kBT/(−WQ) vs. n for
U/(−WQ) = 1.1, W1 > 0 and k = 0,−0.2,−0.6,−1 (as
labeled). Solid and dashed lines indicate second order
and “third order” boundaries, respectively.
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3. Conclusions

In this paper we studied atomic limit of the extended
Hubbard model with intersite repulsion W1 > 0 and next-
-nearest neighbour attraction W2 < 0. We considered
two qualitatively different regimes of the on-site interac-
tion: strong attraction U/(−WQ) = −10 and (relatively)
strong repulsion U/(−WQ) = 1.1. Our analyses show
that for attractive W2 and n 6= 1 the states with phase
separation have the lowest free energy at sufficiently low
temperatures T ≥ 0, whereas for W2 = 0 only homoge-
neous phases exist on the phase diagrams which have the
form presented in Ref. [8].

The areas of PS states stability expand with increase
of the next-nearest neighbour attraction strength. More-
over, the continuous transition between two different PS
states occurs for 0 < |k| < 0.6. One should notice that a
change of the strength of the next-nearest attraction can
modify a type of the critical point for separation (which
can be B, T or H point).
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