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We give a compact review of some of our recent results on the quantifi-
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quantum systems of variable structure and dimension. Also a first experi-
mental implementation is briefly discussed.
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1. Introduction

Quantum entanglement is considered to be a central resource of quantum
information processing: entanglement is a key ingredient in quantum teleporta-
tion [1], and is used to perform conditional two-qubit operations, which are pri-
mordial for running a quantum algorithm [2]. There is a large body of literature
on the abstract, rather mathematical theory of entanglement [3], of pure as well as
of mixed states, and equally so one can find a considerable number of proposals on
manipulating the entanglement of two qubits [4] — the smallest quantum systems
which can exhibit quantum correlations. On the experimental side, single and
two-qubit operations are by now very well controlled [5], and the important chal-
lenges arise with the control and characterization of the entanglement inscribed in
quantum systems with an ever larger number of constituents [6-8]: to outperform
a classical supercomputer, also an all-purpose quantum computer has to run on
large quantum registers, i.e., several hundred or thousand rather than two qubits.
Yet, very little is known on the time evolution of entanglement under realistic
conditions, in a multicomponent quantum system of increasing size.

Indeed, if we take it as granted that entanglement is a central resource, some
kind of special “fuel” on which a quantum computing engine runs, then the central
question for the experimentalist is the time scale on which this fuel is exhausted, as
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compared to the time scale needed to perform the actual algorithmic task. Since
entanglement is a manifestation of coherent superpositions of many-particle eigen-
states of a quantum register, it is clear that decoherence will be detrimental for
quantum entanglement, and a quantitative theory to assess entanglement decay
rates under environment coupling is very much in need. Since, in addition, the
spectral density of a composite quantum system increases with its number of con-
stituents, it is also clear that a multicomponent system will respond differently to
environmental noise than a two-qubit system, and very general arguments suggest
that the larger the system the faster the decay of multiparticle coherences [9, 10],
and thus of entanglement. Therefore, if we take the perspective of a quantum
computer seriously, then the theoretical challenge ahead is to develop a theory
which focusses on the scaling properties of entanglement, and notably of its ro-
bustness against environment coupling with increasing systems size [11, 12]. Since
the Hilbert space dimension of a composite quantum system grows exponentially
both with its number of constituents as well as with the dimension of the indi-
vidual factor spaces, this is a highly nontrivial challenge, both for experiment and
theory: on the theoretical side, one needs to find computationally ef ficient tools
for the characterization of entanglement, such as to inspire experimental strate-
gies to identify specific classes of non-classical correlations inscribed in arbitrary
quantum states of increasing dimension — without requiring a complete knowl-
edge of the state [13-16]. Thus, the theoretical focus on the scaling properties of
entanglement is intimately related to the experimental need for efficient ways of
entanglement measurement.

Finally, we should be aware of the fact that the desire to run a large scale
quantum computer implies that we aim at exploring quantum interference effects
on a macroscopic, or, at least, mesoscopic scale. The fact that coherent superpo-
sitions of macroscopic objects in the world around us are scarce, provides another
very explicit hint to the problems yet to overcome. Necessarily, large composite
systems are always in some sense open systems, i.e., they are coupled to uncon-
trolled/unobserved degrees of freedom, which implies decoherence [17]. In this
sense, the possibility of building a real quantum computer is conditioned on our
ability to avoid the quantum-classical transition on macroscopic scales, and this
immediately clarifies, why experiments on the controlled creation of many-particle
entanglement [6-8] and on the coherence properties of heavy particles represent
just two faces of the same medal [18].

2. Quantifying entanglement
Before we can address the dynamical evolution of entanglement, we need
efficient tools to distinguish separable from entangled states, and to quantify the
amount of entanglement inscribed into a given state. This problem has a com-
plete solution for the simplest possible case of two qubits — i.e., for systems living
on a four-dimensional tensor Hilbert space H = H; ® Hy composed of two two-
dimensional Hilbert spaces, and mixed state entanglement can be derived purely
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algebraically from the density matrix of such 2 x 2 system [19]. Indeed, first experi-
ments did monitor the time evolution of the entanglement of an initially maximally
entangled 2 x 2 state under environment coupling, through direct tomography of
the density matrix at different times ¢ [20-22]. The insets in Fig. 1 show the re-
distribution of the coherences of the density matrix as time evolves, together with
the monotonous decrease in entanglement [20]. Remarkably, however, it is not
obvious from the density matrix’ time evolution that the coherences really decay
— while entanglement does: this is an immediate manifestation of the nonlinear
dependence of entanglement on the density operator, which is at the very heart
of the entanglement characterization problem, and which turns into a truly hard
problem for systems of larger dimension, where tomography no more provides a
realistic strategy for state analysis, simply due to the exponential increase in the
required experimental resources.
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Fig. 1. Time evolution of the entanglement of a maximally entangled two-qubit state
under environment coupling [20]. The insets show the statistical operator represent-
ing the quantum state at different times. While entanglement decays monotonously,
the coherences of the density matrix are redistributed, but not clearly damped out.
This highlights the nonlinear dependence of the state’s entanglement on the statistical

operator. (Courtesy of C. Roos).

The matter thus becomes much more involved when we increase the number
of subsystems or the subdimension of the factor spaces H;. However, it is this
latter problem which we have to tackle if we want to talk about large scale quantum
computing! Therefore, let us look a bit deeper into this subject.

2.1. Entanglement measures

A pure state | ¥) on a bipartite Hilbert space H = H,® Hy is called separable
if it can be written as a product |¥) = |¢) ® |n) of any two vectors |¢p) € H;
and |n) € Hs; otherwise, the state is entangled. Possible measures of pure state
entanglement are [23] provided, e.g., by the von Neumann entropy of the reduced
density matrix of either one of the subsystems, or by concurrence. They have a
nice interpretation in terms of the information loss induced by tracing out one of
the subsystems, and concurrence is defined as
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o(¥) = /201 = Top?), (1)
in terms of the reduced density matrix p, of one of the subparties. In particular,
this definition vanishes precisely for separable states, and is immediately amenable
to bipartite systems of arbitrary finite dimension [24]. In the following, we will use
concurrence as our preferred entanglement measure, essentially since its definition
allows for algebraic manipulations which would be much harder, e.g., for the von
Neumann entropy.

It may appear suggestive to generalize concurrence for mixed states

PZZPH%NWH» (2)

as the weighted average of the pure state concurrences of its pure state compo-
nents. However, since the pure state decomposition of mixed states is not unique,
this is not a viable strategy. Rather, one has to take the infimum over all possible
pure state decompositions [25],

c(p) = inf gy, u,y Y pic(¥y), (3)
J

which has an explicit solution in the 2 x 2 case [19], but in general defines an
optimization problem of rapidly increasing dimension as the system dimension
increases. Furthermore, a numerical solution of the optimization problem will
always yield upper bounds for concurrence, which cannot help to distinguish sep-
arable from entangled states: what is needed are lower bounds.

These can be derived once one realizes that pure state concurrence can be
reformulated as

co(¥) = V(¥ (V[A]Y)2|P) (4)
with a self-adjoint operator A acting on two copies of the state to be analyzed [26],
see Fig. 2. A « Pgl) ® PSQ) with P£1’2) the projectors on the antisymmetric
subspaces of the space of the first and second copy of subsystems 1 or 2. One
easily verifies that, also in this formulation, ¢(¥) vanishes exactly for separable

states.

Indeed, the algebraic structure of (4) lends itself for an immediate general-
ization for multipartite systems, where A is composed of products of symmetric
and antisymmetric projectors with the constraint that it be symmetric under ex-
change of the copies of all subsystems, since |¥) ® |¥) is symmetric under this
operation (see Fig. 2). Finally, mixed state concurrence of a general multipartite
mixed state p is given by

clp) = ity D pi/ (@ (%51A10) 9| 9;), (5)

where A needs further specification for the specific type of multipartite correla-
tion to be addressed [26, 27]. Similarily to the bipartite case ¢(p) vanishes for
completely separable multipartite states, for any specific definition of A with a
vanishing contribution of the locally symmetric projector PE’N . Whether this
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Fig. 2. Schematic representation of the two-copy scheme for a multipartite system.
The self-adjoint operator A is composed of products of symmetric and antisymmetric
projectors P on the (anti)symmetric subspaces of the first and second copy of either one
of the subsystems 1... N with the constraint that A be symmetric under the simultane-
ous exchange of the copies of all subsystems [26]. For N = 2, A is given by the product
of two antisymmetric operators: A o Pﬁl) ® Pﬁ2>.

general definition of ¢(p) also defines an entanglement monotone is a much more
intricate question, which is addressed in detail in [28]. Though, all multipartite
concurrences which we shall quantitatively evaluate in the sequel of the present
review indeed are entanglement monotones [28].

Equation (5) allows for the derivation of a hierarchy of lower bounds of mixed
state concurrence of multipartite quantum systems of arbitrary finite dimension,
which are obtained by optimization over a considerably reduced optimization space
as compared to Eq. (3) [26, 29], or even by simply diagonalizing a matrix of the
same dimension as p [30]. Since the general definitions of the relevant algebraic
quantities are rather involved, the interested reader is referred to the original
papers [26, 29, 30] for details. This hierarchy helps quite a bit in reducing the
computational effort for efficient entanglement characterization, and allowed us
to address, e.g., the robustness of the entanglement (quantified by its decay rate)
of maximally entangled bipartite [31], W, GHZ [10], or elliptic island states [32]
in quantum systems encoded in quantum registers of increasing size IV, the time
evolution of bipartite entanglement generated by random Hamiltonians [30], and
equally so the performance of entanglement creation schemes [26], under incoherent
coupling to public or private baths.

As an example, Fig. 3 shows the decay of the entanglement of three-partite
|[W) = (|001) + ]010) + [100))/v/3 and |GHZ) = (|000) 4 |111))/+/2 states, when
each qubit is coupled to a private bath (i.e., the qubits cannot interact through
the environment) with coupling strength I" [10]. Different decoherence processes
— spontaneous emission, noise, and dephasing — were modeled with the standard
master equation formalism (see Eq. (7) hereafter, with suitably chosen opera-
tors Jj), and the N-partite concurrence [10, 26]:

en(¥) = 21_2]\/(21\’ —2)(¥|¥)2 — ZTrp?, (6)

was used as an entanglement measure (here for N = 3) [26, 28], where the sum
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Fig. 3. Decay of the three-partite concurrence cz [26, 28] of three-partite W (solid
lines) and GHZ (dashed lines) states [10], where each register qubit is individually
coupled (with strength I') to its private zero temperature (circles), infinite temperature
(squares), or dephasing (triangles) environment — therefore, the qubits cannot interact
through the environment. Concurrence was here calculated by the use of the quasipure
approximation [30], which is the computationally “cheapest” entanglement quantifier of
our hierarchy of lower bounds. However, the accuracy of the approximation was found
to be excellent by direct comparison to optimal lower and upper bounds of concurrence

at different times.
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Fig. 4. Scaling of the entanglement decay rate v of GHZ (left) and W (right) states
with the register size N, for a zero temperature (circles), infinite temperature (squares),
and dephasing (triangles) environment [10]. As to be expected, 7 in general increases
with N, except for W states coupled to zero temperature and dephasing environments,
where + is independent of N. This is essentially due to the fact that W states bear only
one excitation, independently of N. 7 can be derived analytically for GHZ states under
dephasing, and for W states under zero temperature environment coupling [10, 31], which
once again allows for an independent verification of our lower entanglement bound by

quasipure approximation.
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over j runs over all nontrivial reduced density matrices p; deduced from ¥. For all
cases, we can extract a typical decay rate v, at least for short times, as illustrated
in Fig. 3. The same can be done for W and GHZ states on larger N-qubit quan-
tum registers, and Fig. 4 shows the dependence of the decay rates on the register
size N. As to be expected, v grows with NV in most cases, which highlights the
difficulty to construct a large scale quantum computer. However, we also observe
that W states under dephasing and spontaneous emission exhibit entanglement de-
cay rates independent of N, which identifies these states as somewhat more robust
under the scalability requirement.

Another example is shown in Fig. 5, where the time evolution of the multi-
partite concurrence (6) of quantum registers of lengths k = 5, 8 is monitored un-
der the strictly unitary action of the quantized version of the (classically chaotic)
Harper map, as well as under diffusive noise (which acts locally in classical phase
space) [32]. This provides an instructive example for the potential impact of clas-
sically regular or chaotic dynamics on quantum entanglement in systems with a
well-defined classical counterpart: While chaotic dynamics in the underlying classi-
cal phase space tends to increase the entanglement on short time scales for minimal
uncertainty initial states (suitably encoded in the quantum register) launched in
the chaotic subdomain, concurrence remains essentially constant when the wave
packet is initially localized in an elliptic island — provided the effective size of
hier = 27% /27 is sufficiently small to suppress tunneling on the time scale of inter-
est. In contrast, however, the entanglement evolution in the chaotic phase space
domain reveals itself as highly fragile under the influence of noise, while the ellip-
tic island is observed to screen substantial multipartite entanglement against the
detrimental influence of the environment — for the specific type of noise considered
here [32].

2.2. Entanglement dynamics revisited

With the above, we can quantify entanglement dynamics in arbitrary finite
dimensional quantum systems, but still need to rely on the time evolution of the
density matrix p(t) itself: at each time ¢, we apply the above prescription (5, 6)
to deduce the state’s entanglement from p(t). Instead, we would like to develop a
scheme for the direct monitoring of entanglement evolution in real time. As we will
show in the present section, this can be achieved by unraveling [33] entanglement
in a quantum trajectory treatment.

To set the scene, let us remember that the wide-spread description of inco-
herent state evolution by a master equation of the type

dp i

1
FT *E[HSysvﬂ] + Z 3 (QJkPJ;I - J;IJkP - PJ;iJk) , (7)
e

which we used to generate the results of Figs. 3 and 4, can be substituted by a
stochastic pure state evolution of the initially pure state |¥y), mediated by the
quantum jump operators Jy and a non-Hermitian, free evolution generated by
Heg = Hgys —iR) -, J,ZJk/3 [33]. A quantum jump occurs under the action of Jj
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Fig. 5. Evolution of multipartite concurrence Cx, Eq. (6), under the quantized, clas-
sically chaotic Harper map [32], for two different numbers of qubits: k =5 (top), k = 8
(bottom). The stroboscopic ‘time’ ¢ counts the number of applications of the Harper
map. Open symbols refer to unitary dynamics, while filled symbols represent the evo-
lution under diffusive noise [32]. Squares correspond to an initial condition inside the
nonlinear resonance island, triangles to initial conditions within the chaotic sea, in the
classical phase space spanned by canonical position and momentum coordinates (see
inset). For different qubit numbers, the ratio of noise strength € to the effective size of
Planck’s quantum feg is kept constant (e = 0.04 for k£ = 5 and ¢ = 0.005 for k = 8).
Black arrows indicate the value of C for k-partite GHZ states. Clearly, hesr needs to be
sufficiently small for the distinct time evolution of concurrence for regular and irregular
initial conditions to prevail (as evident from comparison of the k = 5 to the k = 8 case).
If Rhesr is still too large (for k = 5), the entanglement screening against noise provided
by the elliptic island remains imperfect, due to appreciable tunneling-coupling between

the interior of the island and the chaotic sea.

on |¥(t)), with probability dpx, and is associated with the detection of a specific
event, e.g., the emission of a spontaneous photon. If no event is detected, with
probability 1 — 3", dpx, | ¥(t)) evolves under the action of Heg, always remaining
in a pure state. Since the occurrence of a given event is probabilistic, a single pure
state trajectory evolves stochastically, and the state p(t) generated by the mas-
ter equation is recovered after lumping together the stochastically evolved states
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Fig. 6. Schematic representation of the time evolution of different quantum jump tra-
jectories in the unraveling approach. At each time step, a quantum jump occurs with
probability dp, and no event is observed with probability 1 — dp. An ensemble of quan-
tum trajectories provides an ensemble of pure states | ¥.s,) at time ¢ = ndt, which is a

valid decomposition of the density matrix at that time.

| (t)), for different realizations of the stochastic jump process, as illustrated in
Fig. 6. Thus, the quantum jump approach immediately yields a pure state decom-
position of p(t), for arbitrary ¢, which is completely determined by the detection
record of the quantum jumps. Since pure state concurrence of the individual pure
states | ¥ (t)) is easily evaluated, at least in the bipartite case, the detection record
amounts to a direct monitoring of entanglement evolution under incoherent dy-
namics. The average pure state concurrence after a first time step 6t reads

N N
c(ot) = <1 - Z 6pk> (W) + Z Spre(TE). (8)
k=1 k=1

But. .. what about the infimum in Eq. (3)? Is the pure state decomposition
of p(t) obtained by the stochastic pure state evolution optimal in that sense? Of
course, in general, it is not, but we can explore the invariance of the master Eq. (7)
under the following transformation of the jump operators:
pild £, UgiJ;
— (9)

V2

with the complex scalar u, and the left unitary matrix U and the identity Id. Now
we can minimize &(0t), by variation of the parameters of the transformation (9),
and compare the time evolution under the thus optimized unraveling with the time
evolution of concurrence when deduced from the density matrix p(t) propagated
by the master Eq. (7). Figure 7 shows such comparison for two different initial
states of two qubits, coupled to a zero temperature environment — i.e., the only

Ly+ =

source of quantum jumps are spontaneous emission events from either one of the
two qubits. For sufficiently large p1 = po = > 3 and
i i
ae Be?
U= : o, 10
(—Be_lﬂ ae—zG) (10)
with a = 3 = 1/V2, 0 +¢ = 1/2 = —2x + 0, 0 = arg(¥?,/r(%)), (V) =
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Fig. 7. Time evolution of the bipartite mixed state concurrence for initial states

| Wo) = (|00)+|11))/v/2 (&(t = 0) = 1) and | ¥o) = 1/1/8|00)++/7/8|11) (&(t = 0) ~ 0.7),

under incoherent coupling to a zero temperature environment (i.e., decoherence induced

by spontaneous emission). Continuous lines represent exact solutions [19, 26, 35]; filled

squares stem from a randomly chosen unraveling. Symbols show the results for improv-

ing unravelings with increasing |p1| = |u2| = 0.8 (filled diamonds), 1.0 (filled pyramids),

3.0 (filled circles), 4.0 (open squares), 7.0 (open circles), and 15.0 (open diamonds). The

dashed line shows the time evolution of [A(t)| = [A1 — >__, \;| beyond the disentangle-

ment time tq, where the \; are the singular values of the matrix (¥} |0y, ® oy| ¥;) [26],

constructed from the pure state decomposition of p(¢). 1000 quantum trajectories were

accumulated to generate the unraveling data, in all cases.

Yoot11 — Yo1v10, | Wo) = t00l00) + 01/01) + 10[10) + 11[11), and c(¥p) =
2|to1%10 — Yooth11|, the agreement is perfect, for all times, despite the fact that we
performed the optimization of the jump operators only locally in time, at t = dt.
Let us note that this is a highly nontrivial result, since, first, not all pure state de-
compositions of a given density matrix are physically accessible [34] (i.e., in other
words, reachable by parameterizations of Ly 1), and, second, there is no clear a
priori reason why the optimal unraveling should be time-independent, what it is,
by virtue of our present results. Let us note that we obtain qualitatively the same
results for different initial states and different types of environment coupling, e.g.,
dephasing and infinite temperature baths, as well as for tripartite qubit states
under zero temperature and dephasing noise [35]. This suggests that the time
evolution of entanglement is completely determined by the initial condition and
the type of environment coupling, which would imply a considerable simplification
of the characterization of mixed state entanglement. Further studies will seek for
a mathematical proof of this conjecture, and also for its generalization for higher
dimensional bi- or multipartite systems.

3. Observable bipartite entanglement
Let us finish with a short discussion of yet another strategy for the di-
rect experimental detection of entanglement, which is inspiredby the reformula-
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tion (4) of pure state concurrence. Obviously, since A is a self-adjoint operator,
concurrence can be understood as the expectation value of A with respect to
a twofold copy of the state |¥) to be analyzed, and is thus directly accessible
through a projective measurement in this extended Hilbert space. Indeed, since
PYeP? 4 pWgp? = pYeid=PY e PP on|¥)o|¥) (since PP @ PP
is antisymmetric, and therefore vanishes on | ¥) ® | ¥)), ¢(¥) can be directly mea-
sured by projecting either one of the two subsystems together with its copy on
the associated antisymmetric subspace, i.e., by evaluating the expectation value
of PV ®1d (or of Id ®P£2)). This has actually been done [16], in a proof of prin-
ciple experiment on hyperentangled twin photons, where two copies of the same
quantum state |¥) = «|0) ® |1) + S]1) ® |0) were inscribed in two independent
degrees of freedom, the polarization and the momentum, of one and the same
physical twin photon pair. The antisymmetric subspace of the first photon and its
copy is spanned by the antisymmetric Bell state |¢~) oc | =) @ |R) — | T) ® |L),
and the concurrence of |¥) is therefore directly given by the probability to de-
tect the first photon and its copy in the state |#~) (where we identify, without
loss of generality, | —) and |L) with |0), and | 1) and |R) with |1), respectively).
For normalization, also the probability to detect the symmetric Bell states (which
complete the four-dimensional Bell basis) needs to be recorded in the experiment.
This measurement provides an unknown state’s |¥) concurrence — the experi-
mentalist, who performs the projective measurement, only needs to be sure that
he is given a faithful twofold copy of | ¥), but needs no a priori knowledge on «
and (3 [36, 37]. Furthermore, the measurement protocol will succeed for arbitrary
pure initial states, not necessarily of the type chosen in this specific experiment,
and can be generalized to estimate mixed state entanglement [15].
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Fig. 8. Relative abundance of detections of the first photon’s copies in the sym-
metric (Y7, ¢T) and antisymmetric ()7) Bell states, for different initial states
|¥) = a|0) ® [1) + B]1) ® [0) with o = 0.71 % 0.02,0.53 & 0.01, 0.35 = 0.01, 0.99 + 0.03,
from (a) to (d), respectively [16].
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Fig. 9. Experimentally measured concurrence (filled circles) of the state
|7) = «|0) ® |1) + B|1) ® |0) vs. |a|, compared to the theoretical expectation

¢ =2|a]y/1 — |a|? (continuous line) [16].

Figure 8 shows the relative abundance of antisymmetric and symmetric Bell
state detections, for different values of « (8 is then fixed by normalization). Fig-
ure 9 collects the resulting values of concurrence, as a function of |«|, and shows
perfect agreement between experiment and theory. Thus, our algebraic refor-
mulation (4) allowed for the first direct measurement of the entanglement of an
unknown pure state, without state tomography. Since (4) is invariant under an in-
crease in the subspaces’ dimensions, this paves the way for the direct experimental
assessment of the entanglement of unknown quantum states in higher dimensional
systems.

4. Conclusion

We introduced various tools and methods for the efficient characterization
of quantum entanglement. However, while we initially insisted in the fact that the
real challenge lies in the quantitative characterization of the entanglement of higher
dimensional bipartite, or multipartite systems, not all of our results do already
meet this requirement: The general validity of the unraveling of entanglement
also for higher dimensional and/or multipartite systems remains to be shown, and
also the direct projective measurement of entanglement on a twofold copy of the
state under scrutiny has hitherto been performed only on pairs of qubits. Hence,
lots of hard and challenging work remains to be done, both on the experimental
and on the theoretical side: As for the latter, we still need a mathematical proof
that all our lower bounds derived from (5) are strictly positive for non-separable
states [26], and have to incorporate unavoidably finite detection efficiencies in our
unraveling scheme, to make it directly applicable in state of the art experiments.
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