ALL Metrics
-
Views
-
Downloads
Get PDF
Get XML
Cite
Export
Track
Research Article

The role of exogenous epidermal growth factor on Ki-67 proliferation marker expression in the submandibular salivary gland of albino rats receiving doxorubicin

[version 1; peer review: 2 approved, 1 approved with reservations]
PUBLISHED 03 Dec 2020
Author details Author details
OPEN PEER REVIEW
REVIEWER STATUS

Abstract

Background: This study was conducted to evaluate the role of exogenous epidermal growth factor (EGF) injection on the Ki-67 immuno-expression in submandibular salivary gland tissue of rats receiving doxorubicin (DXR).
Methods: A total of 21 two-month-old male albino rats, of 200 g body weight, were divided into three groups: control group; DXR group, the rats received 20 mg/kg body weight DXR as a single intra peritoneal injection; DXR+EGF group, the rats received the same dose of DXR and on the next day they were injected intraperitoneally with 10 µg/kg body weight of EGF daily for one week. Histological sections and immunohistochemical expression of Ki67 sections were examined using a ZEISS Primo Star light microscopy and images taken using Tucsen IS 1000 10.0MP Camera.
Results: Ki-67 expression was significantly increased in submandibular salivary glands of rats after DXR injection. However, Ki-67 expression in the glandular tissue was restored to normal levels after EGF injection.
Conclusions: EGF preserved glandular architecture after DXR injection and maintained Ki-67 immune-expression within the glandular tissue near to the normal level.

Keywords

Epidermal growth factor, Ki-67, Doxorubicin, submandibular salivary gland

Introduction

Ki-67 is a heavy protein of 395 kDa weight. It is a proliferation marker which is highly expressed in various tumors, and has been used for investigations of many cancer types. Ki-67 is controlled by proteolytic pathways and has similar essential properties with other proteins known to regulate the cell cycle (Hofmann & Bucher, 1995). Furthermore, Ki-67 is an important protein for cell division as antisense nucleotides of Ki-67 will stop the division, and it is a vital factor in the formation of ribosomes (Schluter et al., 1993). This is reinforced by the conclusion that Ki-67 immuno-expression associates with the rate of protein production and function of ribosomes (Plaat et al., 1999).

Proliferation marker evaluation is of high value in pathological diagnosis and prognosis. It has been reported that Ki-67 has a prognostic character for many forms of malignant tumors, such as lymphomas, breast, prostate and colorectal cancers (Tretiakova et al., 2016). Ki-67 is a protein formed during active phases of the cell mitotic cycle, but is not present in resting cells. Therefore, its expression is used as an assessment tool for tissue proliferation (Faur et al., 2015).

The division activity measured by Ki-67 has been reported in previous studies, and has a great prognostic significance in different forms of malignancies (Yerushalmi et al., 2010). Ki-67 is a protein linked with cell production and is noticeable in all active phases of the cell cycle cresting at G2 and persisting at low levels after cell cycle exit. It then becomes undetectable in senescent cells (Sobecki et al., 2017).

Epidermal growth factor (EGF) could motivate the production and differentiation of epidermal cells and assist skin renewal and wound healing. The therapeutic effect of EGF in the treatment of thermal injuries is not only confined to rapid activation of the healing process and a decrease in tissue damage, but also decreases the size of the affected area and reduces hyperergic inflammation. EGF has demonstrated its efficacy in thermic injury by stimulating wound healing and decreasing the possibility of purulent septic complication and tissue damage. This process might also involve modulation of the immune system status (Osikov et al., 2014; Parment et al., 2007).

Doxorubicin (DXR) is an important drug for leukemia, Hodgkin's lymphoma and bladder, breast, stomach, lung and ovaries cancer, treatment during chemotherapy (Bielack et al., 1996). Jensen et al. (2002) studied the consequence of chemotherapy on the salivary gland with different solid and hematological tumors. Apart from xerostomia, 50% of the salivary glands of the patients showed ductal dilatation, cyst formation, degenerated acini and inflammatory cell presence. These degenerated salivary glands were markedly detected less than 2 weeks after chemotherapy. DXR motivates reactive oxygen species (ROS) synthesis and depolarizes the membrane potential of the mitochondria. Both excessive ROS synthesis and mitochondrial membrane damage are very important causes of cellular injury (Ghosh et al., 2011).

This study was conducted to evaluate the role of exogenous EGF injection on the Ki-67 immuno-expression in submandibular salivary gland tissue of rats receiving DXR. Rats were used in this study because they have biology similar to humans and therefore can be a model for human carcinogenicity and recovery.

Methods

Animals

This study protocol and the animal care and experimental procedures were approved by the Ethics Committee, Faculty of Dentistry, Cairo University, Egypt (#415). All efforts were made to ameliorate any suffering of the animals by adopting the OECD 423 test guidelines, and all applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

In total, 21 male adult albino rats, two months old, pathogen free, with an average weight of 200 gm were used. The animals were obtained from and housed in the Animal house, Faculty of Medicine, Cairo University. Sample size calculation was performed using G*Power version 3.1.9.2 (University Kiel, Germany) (Faul et al., 2009). The effect size was 0.95 using α level of 0.05 and β level of 0.05, i.e., power = 95%; the estimated sample size (n) was a total of 21 samples for three groups.

The animals were housed in a controlled environment (temperature 25±2°C, humidity 70–80% and 12hr dark/light cycle) and had free access to food and water. The animals were fed a natural diet and water ad libitum throughout the whole experiment. The rats were acclimatized to their cages for 1 week.

All 21 rats were given a number (1–21) using a marker pen, then randomized by putting the numbers in an envelope and dividing them into three groups according to the numbers which were taken from the envelope.

The three groups were as follows:

  • control group, the rats were kept on a normal diet and did not receive DXR or EGF;

  • DXR group, the rats received 20 mg/kg body weight DXR as a single intra-peritoneal injection (Ayla et al., 2011);

  • DXR+EGF group, the rats received the same intraperitoneal dose of DXR (20 mg/kg body weight) and on the next day they were injected intraperitoneally with 10µg/kg body weight of EGF daily for one week (Ohlsson et al., 1997).

The rats were injected every morning at 9 am in the animal house laboratory of Faculty of Medicine, Cairo university.

Procedure

This study was performed to detect changes in the salivary glands after doxorubicin injection and the role of EGF, if any, in reversing any negative changes appearing in the glands. Therefore, histological sections as well as Ki67 immuno expression were used to detect these changes.

The rats were sacrificed by euthanization by CO2 asphyxiation followed by cervical dislocation when the experiment finished after 1 week.

Submandibular salivary glands of both sides were dissected out and preparation of specimens for staining procedure was done as follows.

After the glands were excised, those of the right side were fixed immediately in 10% neutral buffered formalin. Then, the specimens were washed properly under running water, dehydrated through ascending concentrations of alcohol and transferred to xylene to clear the specimens from alcohol. Then, the glands were embedded in paraffin wax and mounted in the center of the paraffin wax blocks. Sections from paraffin embedded tissues blocks were cut into sections 5-µm thick and mounted on glass slides for histological examination using Samples were processed for regular histopathological examination using H&E stain. Other sections were stained with immuno-peroxidase for immunohistochemical detection of Ki-67 in the glandular tissue using staining reaction containing anti-Ki-67 antibodies (Santa Cruz Biotechnology catalogue # sc-23900).

The selected sections were studied by ZEISS Primo Star light microscopy and images taken using Tucsen IS 1000 10.0MP Camera in the Oral Biology Lab, Faculty of Dentistry, Cairo University.

The scoring of the staining reaction of the immunohistochemical parameter (presence of Ki-67) of the different groups was as follows: (-) negative reactivity and (+) positive reactivity.

Image analysis

Image analysis was performed using a computer system software Leica Quin 500 (LEICA Imaging Systems Ltd, Cambridge, England) to assess the area percentage of the immunostaining within the tissues.

The image analyzer was first calibrated automatically to convert the measurement units (pixels) produced by the image analyzer program into actual micrometer units. Measurement of the area of percentage positive cells was done as previously described (Shi et al., 2007). Briefly, the percentage of positive cells was recorded as an area and area percentage within a standard measuring frame of area 114,342.9 mm2 per 10 fields from different slides. This was done at a magnification of 400X by the light microscope transmitted to the monitor. Areas containing the most uniformly stained tissues were chosen for evaluation. These areas were disguised by blue binary color which could be measured by the computer system. Images were manually corrected for brightness and contrast. Colour thresholding was then performed automatically after which pictures were converted to RGB stack type. Masking of the brown cytokeratin, immuno-stain was performed by blue colour where any brown stain of any intensity was considered positive whereas the background grey stain was considered negative. Area fraction was then calculated automatically representing the area percentage of immune positive cells to the total area of the microscopic field.

Data analysis

Image analysis data representing experimental values of Ki-67 immunostain were given as mean and standard deviation. ANOVA (ONEWAY ANOVA test, n=10, P <0.05) was used to compare the mean area percent of Ki-67 immuno-expression among the specimens of different groups. Tukey’s Multiple Comparison Test (Post Hoc Tukey HSD) was performed to calculate a pair-wise comparison between each group. SPSS 25.0 for Windows (SPSS Inc., Chicago, IL, USA) was used for analysis.

Results

Histological examination

Histological examination of the submandibular salivary gland of rats of control group (group I) revealed its main structural components was composed of parenchymal tissue supported by connective tissue stroma (Figure 1A). Histopathological sections of DXR group (group II) showed several pathological changes. The secretory acini appeared with massive cytoplasmic vacuolization, and deformation in the acini and loss of normal cellular orientation were frequently encountered. A clear space separated the parenchymal elements, which might be an index of interstitial edema and extravasated red blood cells (RBCs) in between acini and ducts (Figure 1B).

5368feff-ce7a-4bd4-aa83-84f969e0429b_figure1.gif

Figure 1. Photomicrographs showing histology of salivary glands.

(A) Control group, regular gland architecture; (B) DXR group, degenerated acini with multiple vacuoles extravasated red blood cells (RBCs) in between acini and ducts; (C) DXR+EGF group, well aligned acini together with blood vessels engorged with RBCs in association with the striated ducts exhibiting good cell alignment and minute areas of small vesicles. H&E staining, orig. mag. X400.

Comparing with the histopathological results of DXR group, the DXR+EGF group (group III) sections showed great enhancement in the structural features of the glands. Little evidence of inflammatory condition was present. On the other hand, many blood vessels engorged with RBCs were found in close relation with the striated ducts. Moreover, a rich vascular network was found in association to the excretory ducts (Figure 1C).

Ki-67 immunoreactivity

The control group sections showed positive cytoplasmic immunoreactivity for Ki-67 protein in the parenchymal tissue of the glands, which appeared more distinctive in the duct system. Scattered nuclear reactivities were identified for the protein antigen. A few localized focal areas in the secretory acini as well as the endothelial cells of blood vessels expressed the proliferation antigen at higher intensity (Figure 2A). On the other hand, the immunohistochemical findings of the DXR group corroborated with the histological results; Ki-67 protein was localized in the DXR group sections differently to the control group. DXR was found to increase the immuno-expression of Ki-67 protein in the submandibular salivary glands of rats particularly the secretory terminal portions. Wider areas of the acini expressed the antigen and with greater intensity. The expression of the proliferation antigen appeared foamy, probably due to the vacuolar degeneration affecting the glandular tissue. Scattered nuclear and perinuclear reactivities were identified for the protein antigen in this group (Figure 2B).

5368feff-ce7a-4bd4-aa83-84f969e0429b_figure2.gif

Figure 2. Photomicrographs showing Ki-67 immunoreactivity.

(A) Control group, positive reaction to Ki-67 protein in the secretory acini and the wall of the blood vessels; (B) DXR group, increased reactivity of Ki-67 in the secretory acini together with the nuclear and perinuclear reactivities; (C) DXR+EGF group, decreased Ki-67 immunoreactivity in the acini. DAB, orig. mag. X400.

The differences between the control and DXRs groups were statistically significant, as there was a significant increase in the mean area percent of Ki-67 immuno-expression found in DXR group in contrast with the control group (p<0.01; Figure 3).

5368feff-ce7a-4bd4-aa83-84f969e0429b_figure3.gif

Figure 3. Area percent of Ki-67 reactivity in the submandibular salivary glands of all groups.

The tissue sections of the DXR+EGF group revealed a remarkable decrease in Ki-67 antigen expression in the acinar cells in comparison to the DXR group. Conversely a slight increase in immunoreactivity to the proliferation antigen appeared in the ductal profiles. Nevertheless, the immunoreactivity seemed to be very similar to that of the control group (Figure 2C).

Post Hoc Tukey HSD test comparing between the groups showed that the difference between the control group and DXR+EGF group was not significant (p>0.05). However, a significant increase was recorded between the DXR and control groups, and a significant decrease was recorded between DXR+EGF and DXR groups (p<0.01; Table 1 and Table 2).

Table 1. Area percentage of Ki-67 immuno-expression in different groups.

ControlDXRDXR+EGFP- value
Minimum5.4869.9584.420.001
Median6.9612.135.62
Maximum8.73115.1189.67
Mean7.39912.5386.277
Standard Deviation1.1181.6612.243
Standard Error0.50.7430.916

Table 2. Tukey’s Post Hoc Test for Ki-67 immuno-expression in different groups.

Tukey’s multiple
comparison
Significance (P>0.05)Summary
Control vs DXR0.003Significant
Control vs DXR+EGF0.778Not significant
DXR vs DXR+EGF0.0001Significant

Discussion

In this study, the systemic injection of DXR in rats resulted in pathological structural alterations within the submandibular salivary gland tissue. Atrophied and degenerated acini with multiple cytoplasmic vacuolization were detected. The chemical composition of DXR leads to creation of free radicals and the stimulation of oxidative stress, which is considered the main factor of cellular damage (Saad et al., 2001). DXR also initiates an inequity between free oxygen radicals and antioxidants. This disturbs the oxidant–antioxidant system, leading to tissue damage that is manifested by lipid peroxidation and protein oxidation within the tissue (Karaman et al., 2006).

Mitochondrial degeneration possibly is the primary cause of the intracytoplasmic vacuolizations shown repeatedly in parenchymal cells of both acini and ducts. Disturbance in cellular metabolism and sodium ions entering the cell have also been reported to cause this damage. This osmotic effect initiates degradation of large macromolecules within the injured cell and leads to the presence of cytoplasmic vacuoles. Furthermore, other cytoplasmic vacuolations might be due to degeneration of other cell organelles such as Golgi apparatus which appear as empty spaces (Ankily et al., 2020).

In our study, the submandibular salivary glands of rats injected with EGF after DXR presented great improvement in the gland architecture. Resolution of vacuolar degeneration was noted apart from minute areas of microvesicles detected in the parenchymal tissue. The acini and ducts cells were more alike to those of the control group. The anti-inflammatory response of EGF was evident in this current work and has been confirmed in previously conducted studies. Berlanga et al. (2002) recorded a protective effect of EGF on the intestine from ischemia/reperfusion injury. They noticed the marked reduction of inflammatory infiltrates (mainly neutrophils) in the intestinal tissue after EGF injection. They also registered decreased level of TNF-α (a major pro-inflammatory cytokine), which may contribute to the cytoprotective effect.

The healing potential of EGF was documented in several studies. It was prevalent in epithelial cell re-epithelialization, proliferation, migration and renewal of gastric glands during renal epithelium regeneration (Flaquer et al., 2010), gastric ulcer healing (Tarnawski & Ahluwalia, 2012), corneal epithelium (Jeon et al., 2018) and salivary glands (Al-Ankily et al., 2018; Shamel et al., 2017).

EGF binding to EGF receptor results in auto phosphorylation of receptor tyrosine kinase and activation of signal transduction pathways that are included in the modulation of cellular division, differentiation and persistence. EGF assists epithelial cell regeneration and plays a vital role in dermal wound healing through motivation of proliferation and migration of keratinocytes (Zeng & Harris, 2014).

Ki-67 is localized during active phases of the cell cycle and its expression is used as a sign of proliferation rate (Faur et al., 2015). It is found in all multiplying cells (normal and up-normal cells) and has been shown to be an admirable proliferation marker to detect the growth rate of certain cell populations. It is also used as the proliferation indicator to evaluate several categories of tumors (Brown & Gatter, 2002; Do Prado et al., 2011; Tadbir et al., 2012).

Dayan et al. (2002) examined time related alterations in the proliferative capacity of parenchymal cells of human labial salivary gland using Ki-67 as a proliferative marker. They reported positive immuno-expression of Ki-67 within the acini and ducts of the glands in all groups. These findings were in agreement with our results as mild cytoplasmic immunoreactivity for Ki-67 protein was registered in the submandibular salivary gland tissue of the control group. Furthermore, it has been considered that Ki-67 protein localization are not binary as it is continuously decreased during G0 and G1 and is continuously increased from the start of S phase till mitotic exit (Miller et al., 2018).

Nonetheless, Birajdar et al. (2014) found Ki‑67 expression in all cases of normal oral epithelium to be mainly presented in the parabasal layer where the numbers of proliferating cells were limited in comparison with the basal cell layer. Furthermore, Hagiwara et al. (2013) detected Ki-67 mainly in the parabasal cells and infrequently in the basal cells in the normal squamous epithelium.

Ki-67 proliferation index was found prominently reduced following chemotherapy treatment, showing the anti-proliferative effect on tumors (Miller et al., 2003 and Miller et al., 2006; Lee et al., 2008). An unexpected finding in the current study was the significant increase in the expression of Ki-67 in the submandibular salivary glands of rats, particularly the secretory terminal portions, secondary to DXR in comparison with control group (p<0.01).

Sasaki et al. (1987) studied Ki-67 in HeLa S3 cells (human cell line derived from cervical cancer cells), and showed an increase in Ki-67 antigen after treatment with DXR, as well as its continuous expression throughout the cell cycle. They hypothesized that this is due to the maintaining response of Ki-67 antigen in the cell cycle; interference in DNA replication might cause a reactive enhancement of the Ki-67 protein.

Kausch et al. (2003) found that the expression of Ki-67 is increased at G2/M, which is exactly the period during which DXR induces apoptosis. They suggested that DXR could have an inhibitory effect on Ki-67 protein production, which may induce apoptosis. However, cancer cells, in an attempt to survive this effect, increase their mRNA to produce more protein. Ultimately, the production of protein by the cell and induction of apoptosis by DXR reaches an equilibrium, the result of which has been a lack of change in the protein after DXR treatment.

These results were also constant with findings in human hepatocellular carcinoma in which DXR treatment caused the acceleration of cell cycle transition; at an early time point allowing cell cycle continuance, but finally leading to cell cycle arrest (Choi et al., 2012).

According to Etemad-Moghadam et al. (2013) a significant increase occurred in Ki-67 mRNA following incubation of cancer cells with DXR, but there was no change in the expression of its protein. However, they failed to explain the exact function and role of Ki-67 in proliferation and cell cycle.

Chemotherapy targets rapidly proliferating cells that are closest to blood vessels but poorly penetrated tumor cells located distal to functional blood vessels (hypoxic regions). Hypoxic cells do not respond to treatment because of the cytotoxic effects generated by oxygen-dependent free radicals. Surviving hypoxic cells in intervals between treatments might re-oxygenate and proliferate from enhanced supply of nutrients released from digestion of dead cells close to the blood vessels. Saggar & Tannok (2015) noted that DXR resulted in the highest increase in Ki-67 cells in reoxygenated surviving hypoxic cells.

Hultman et al. (2018) found that post DXR treatment the BE (2)-C (neuroblastoma cell line derived from human bone marrow) tumor growth presented a remarkable increase in Ki-67-index (from 43% to 64%; p<0.01), thus indicating a move towards cycling cells by application of DXR. Tredan et al. (2007) previously determined the same hypothesis and found in vitro that quiescent (G0) tumor cells enter cell cycle after DXR treatment.

Unexpectedly, we found that Ki-67 proliferation marker expression decreased significantly in the DXR+EGF group in comparison to the DXR group (p<0.001). Weak to mild cytoplasmic immunoreactivity for Ki-67 protein was shown in the parenchymal tissue of the glands of the EGF supplemented group in a manner matching its expression in the control group. Although the expression was a bit stronger than the control, the statistical correlation was not significant (P>0.05). The immunohistochemical results might be correlated with the ultrastructure findings, as binucleation was frequently encountered in DXR group displaying high expression of the proliferation marker, while being unidentified with EGF treatment of low antigen expression (Mansy et al., 2020).

Comparable findings were reported by Fatimah et al. (2012), as they found EGF significantly decreased the pluripotent genes expression of cultured human amnion epithelial cells. It is likely that the mitogenic EGF did not favor abnormal proliferation, as had been unexpectedly detected in the current investigation secondary to DXR. In a previous study, a disruption in normal expression of EGF was found correlated with improved proliferation and differentiation of medial cells in developing palate and resulted in cleft palate in rat embryo (Abbott & Bimbaum, 1990).

Conclusions

We conclude that EGF has a cytoprotective and reparative effect against DXR induced changes on salivary gland tissue in rats. DXR injection significantly increased Ki-67 immunoexpression in the glandular tissue. However, exogenous EGF preserved the immunohistochemical expression of Ki-67 in the glands or restored it to approximately to the normal level.

Data availability

Underlying data

Figshare: The Role of Exogenous EGF on Ki-67 proliferation marker expression on Submandibular Salivary Gland of Albino Rats Receiving Doxorubicin, https://doi.org/10.6084/m9.figshare.13042625.v4 (Shamel, 2020).

This project contains the following underlying data:

  • - Original, unedited light microscopy images in TIFF format

  • - Original, unedited Ki67 immuno-expression images in TIFF format

  • - Area percentage of Ki-67 immuno-expression for all 21 rats in excel sheet

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Comments on this article Comments (0)

Version 1
VERSION 1 PUBLISHED 03 Dec 2020
Comment
Author details Author details
Competing interests
Grant information
Copyright
Download
 
Export To
metrics
Views Downloads
F1000Research - -
PubMed Central
Data from PMC are received and updated monthly.
- -
Citations
CITE
how to cite this article
Mansy M, Soliman M, Mubarak R and Shamel M. The role of exogenous epidermal growth factor on Ki-67 proliferation marker expression in the submandibular salivary gland of albino rats receiving doxorubicin [version 1; peer review: 2 approved, 1 approved with reservations] F1000Research 2020, 9:1393 (https://doi.org/10.12688/f1000research.27186.1)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.
track
receive updates on this article
Track an article to receive email alerts on any updates to this article.

Open Peer Review

Current Reviewer Status: ?
Key to Reviewer Statuses VIEW
ApprovedThe paper is scientifically sound in its current form and only minor, if any, improvements are suggested
Approved with reservations A number of small changes, sometimes more significant revisions are required to address specific details and improve the papers academic merit.
Not approvedFundamental flaws in the paper seriously undermine the findings and conclusions
Version 1
VERSION 1
PUBLISHED 03 Dec 2020
Views
2
Cite
Reviewer Report 08 Jan 2021
Mahmoud Serag, Division of Prosthodontics, Department of General Dentistry, School of Dental Medicine, East Carolina University, Greenville, NC, USA 
Approved
VIEWS 2
The research by Mansy et al. is an interesting study which examined the effect of Epidermal growth factor on salivary gland of albino rats receiving doxorubicin detecting ki67 expression as a proliferation marker. 
The title of the study is suffiecient ... Continue reading
CITE
CITE
HOW TO CITE THIS REPORT
Serag M. Reviewer Report For: The role of exogenous epidermal growth factor on Ki-67 proliferation marker expression in the submandibular salivary gland of albino rats receiving doxorubicin [version 1; peer review: 2 approved, 1 approved with reservations]. F1000Research 2020, 9:1393 (https://doi.org/10.5256/f1000research.30035.r76741)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.
Views
7
Cite
Reviewer Report 07 Jan 2021
Marwa Abdul-Salam Hamied, Department of Oral Diagnosis, College of Dentistry, Sulaimani University, Sulaimani, Iraq 
Approved
VIEWS 7
The paper by Mansy et al. is clearly and accurately presented. They analyzed whether epidermal growth factor effect on ki-67 proliferation marker or not in the submandibular gland parenchyma of albino rats receiving DXR. The submandibular salivary glands of rats ... Continue reading
CITE
CITE
HOW TO CITE THIS REPORT
Abdul-Salam Hamied M. Reviewer Report For: The role of exogenous epidermal growth factor on Ki-67 proliferation marker expression in the submandibular salivary gland of albino rats receiving doxorubicin [version 1; peer review: 2 approved, 1 approved with reservations]. F1000Research 2020, 9:1393 (https://doi.org/10.5256/f1000research.30035.r76739)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.
Views
9
Cite
Reviewer Report 05 Jan 2021
Mushfiq Hassan Shaikh, Department of Otolaryngology-Head and Neck Surgery, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada 
Approved with Reservations
VIEWS 9
Is the study design appropriate and is the work technically sound?
Answer: The study design is okay and the work is technically sound. However, reviewer has a concern about the experiment length. The authors have performed the drug experiment ... Continue reading
CITE
CITE
HOW TO CITE THIS REPORT
Hassan Shaikh M. Reviewer Report For: The role of exogenous epidermal growth factor on Ki-67 proliferation marker expression in the submandibular salivary gland of albino rats receiving doxorubicin [version 1; peer review: 2 approved, 1 approved with reservations]. F1000Research 2020, 9:1393 (https://doi.org/10.5256/f1000research.30035.r75760)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.

Comments on this article Comments (0)

Version 1
VERSION 1 PUBLISHED 03 Dec 2020
Comment
Alongside their report, reviewers assign a status to the article:
Approved - the paper is scientifically sound in its current form and only minor, if any, improvements are suggested
Approved with reservations - A number of small changes, sometimes more significant revisions are required to address specific details and improve the papers academic merit.
Not approved - fundamental flaws in the paper seriously undermine the findings and conclusions
Sign In
If you've forgotten your password, please enter your email address below and we'll send you instructions on how to reset your password.

The email address should be the one you originally registered with F1000.

Email address not valid, please try again

You registered with F1000 via Google, so we cannot reset your password.

To sign in, please click here.

If you still need help with your Google account password, please click here.

You registered with F1000 via Facebook, so we cannot reset your password.

To sign in, please click here.

If you still need help with your Facebook account password, please click here.

Code not correct, please try again
Email us for further assistance.
Server error, please try again.