Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Pharmacokinetics and Brain Distribution and Metabolite Identification of Coptisine, a Protoberberine Alkaloid with Therapeutic Potential for CNS Disorders, in Rats
Jin SuQing MiaoPeipei MiaoYuanyuan ZhaoYuanyuan ZhangNing ChenYujie Zhang Shuangcheng Ma
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2015 Volume 38 Issue 10 Pages 1518-1528

Details
Abstract

Coptisine (COP), a protoberberine alkaloid (PBA) from Chinese medicinal plants (such as family Berberidaceae), may be useful for improving central nervous system disorders. However, its pharmacokinetics, disposition and metabolism are not well defined. In the present study, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was established for the analysis of COP in biological samples. To better understand its in vivo pharmacological activities, COP concentrations in rat plasma were determined after oral (50 mg/kg) and intravenous administration (10 mg/kg). For the brain distribution study, the concentration of COP in five different regions was examined after intravenous administration at 10 mg/kg. Pharmacokinetic parameters from the COP concentration–time profiles in plasma and brain, and the brain-to-plasma coefficient (Kp, brain) were calculated by non-compartmental analysis. The metabolites of COP in rats in vivo and in vitro (urine, bile, liver microsomes and intestinal bacteria incubation) were also identified. Seventeen metabolites, including 11 unconjugated metabolites formed by hydroxylation, hydrogenation, demethylation, dehydrogenation, demethylation, and 6 glucuronide and sulfate conjugates were identified for the first time. The results suggested that COP had low oral bioavailability of 8.9% and a short (plasma) half-life (T1/2=0.71 h) in rats. After intravenous administration, it quickly crossed the blood–brain barrier, accumulating at higher concentrations and then was slowly eliminated from different brain regions. Moreover, COP was transformed into metabolites through multiple metabolic pathways in vivo and in vitro. These results should help to promote further research on COP and contribute to clarifying the metabolic pathways of PBAs.

Content from these authors
© 2015 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top