Skip to main content

Advertisement

Log in

Expression of 3β-Hydroxysteroid Dehydrogenase Type 1 in Breast Cancer is Associated with Poor Prognosis Independent of Estrogen Receptor Status

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Human 3β-hydroxysteroid dehydrogenase type 1 (HSD3B1) plays a vital role in steroidogenesis in breast tumors and may therefore be a suitable target for treatment of breast cancer. This study investigated the role of HSD3B1 in the pathogenesis of breast cancer in clinical and experimental settings.

Methods

Expression of HSD3B1 in primary tumors of 258 breast cancer patients was evaluated by immunohistochemistry. Screening of breast cancer cell lines indicated that triple-negative MDA-MB-231 cells expressed HSD3B1. The effects from genetic and pharmacologic inhibition of HSD3B1 were assessed in vitro and in vivo.

Results

The findings showed that 44% of the 258 breast cancers were HSD3B1-positive. The HSD3B1-positivity was associated with advanced-stage disease (p = 0.009) and reduced recurrence-free survival (p = 0.048) but not with tumor subtype or estrogen receptor status. Silencing of HSD3B1 or treatment with an HSD3B1 inhibitor (trilostane) reduced colony formation in breast cancer cells. Knockdown of HSD3B1 inhibited cell proliferation and migration. Analysis of a murine xenograft tumor model indicated that trilostane significantly slowed tumor growth.

Conclusions

Expression of HSD3B1 in breast cancer is negatively associated with prognosis. The study found HSD3B1 to be a potential therapeutic target for breast cancer independent of estrogen receptor status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.

    Article  CAS  PubMed  Google Scholar 

  2. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.

    Article  Google Scholar 

  3. Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 2016;13:674–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ma CX, Reinert T, Chmielewska I, Ellis MJ. Mechanisms of aromatase inhibitor resistance. Nat Rev Cancer. 2015;15:261–75.

    Article  CAS  PubMed  Google Scholar 

  5. Rechoum Y, Rovito D, Iacopetta D, Barone I, Ando S, Weigel NL, et al. AR collaborates with ERα in aromatase inhibitor-resistant breast cancer. Breast Cancer Res Treat. 2014;147:473–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pietri E, Conteduca V, Andreis D, Massa I, Melegari E, Sarti S, et al. Androgen receptor signaling pathways as a target for breast cancer treatment. Endocr Relat Cancer. 2016;23:R485–98.

    Article  PubMed  Google Scholar 

  7. Guerini V, Sau D, Scaccianoce E, Rusmini P, Ciana P, Maggi A, et al. The androgen derivative 5alpha-androstane-3beta,17beta-diol inhibits prostate cancer cell migration through activation of the estrogen receptor beta subtype. Cancer Res. 2005;65:5445–53.

    Article  CAS  PubMed  Google Scholar 

  8. Hanamura T, Niwa T, Nishikawa S, Konno H, Gohno T, Tazawa C, et al. Androgen metabolite-dependent growth of hormone receptor-positive breast cancer as a possible aromatase inhibitor-resistance mechanism. Breast Cancer Res Treat. 2013;139:731–40.

    Article  CAS  PubMed  Google Scholar 

  9. Hanamura T, Niwa T, Gohno T, Kurosumi M, Takei H, Yamaguchi Y, et al. Possible role of the aromatase-independent steroid metabolism pathways in hormone responsive primary breast cancers. Breast Cancer Res Treat. 2014;143:69–80.

    Article  CAS  PubMed  Google Scholar 

  10. Thomas JL, Bucholtz KM, Kacsoh B. Selective inhibition of human 3β-hydroxysteroid dehydrogenase type 1 as a potential treatment for breast cancer. J Steroid Biochem Mol Biol. 2011;125:57–65.

    Article  CAS  PubMed  Google Scholar 

  11. Hanamura T, Ito T, Kanai T, Maeno K, Shimojo Y, Uehara T, et al. Human 3β-hydroxysteroid dehydrogenase type 1 in human breast cancer: clinical significance and prognostic associations. Cancer Med. 2016;5:1405–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Frierson HF Jr, Wolber RA, Berean KW, Franquemont DW, Gaffey MJ, Boyd JC, Wilbur DC. Interobserver reproducibility of the Nottingham modification of the Bloom and Richardson histologic grading scheme for infiltrating ductal carcinoma. Am J Clin Pathol. 1995;103:195–8.

    Article  PubMed  Google Scholar 

  13. Wang TY, Liu CL, Chen MJ, Lee JJ, Pun PC, Cheng SP. Expression of haem oxygenase-1 correlates with tumour aggressiveness and BRAF V600E expression in thyroid cancer. Histopathology. 2015;66:447–56.

    Article  PubMed  Google Scholar 

  14. Chen IC, Chang YC, Lu YS, Chung KP, Huang CS, Lu TP, et al. Clinical relevance of liver kinase B1(LKB1) protein and gene expression in breast cancer. Sci Rep. 2016;6:21374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chang YC, Hsu YC, Liu CL, Huang SY, Hu MC, Cheng SP. Local anesthetics induce apoptosis in human thyroid cancer cells through the mitogen-activated protein kinase pathway. PLoS ONE. 2014;9:e89563.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chang YC, Liu CL, Chen MJ, Hsu YW, Chen SN, Lin CH, et al. Local anesthetics induce apoptosis in human breast tumor cells. Anesth Analg. 2014;118:116–24.

    Article  CAS  PubMed  Google Scholar 

  17. Doi M, Takahashi Y, Komatsu R, Yamazaki F, Yamada H, Haraguchi S, et al. Salt-sensitive hypertension in circadian clock-deficient Cry-null mice involves dysregulated adrenal Hsd3b6. Nat Med. 2010;16:67–74.

    Article  CAS  PubMed  Google Scholar 

  18. Earnshaw RJ, Mitchell R, Robertson WR. A cytochemical section bioassay for plasma trilostane: an orally active inhibitor of 3 beta-hydroxysteroid dehydrogenase activity. Clin Endocrinol Oxford. 1984;21:13–21.

    Article  CAS  Google Scholar 

  19. Puddefoot JR, Barker S, Vinson GP. Trilostane in advanced breast cancer. Expert Opin Pharmacother. 2006;7:2413–9.

    Article  CAS  PubMed  Google Scholar 

  20. Simard J, Ricketts ML, Gingras S, Soucy P, Feltus FA, Melner MH. Molecular biology of the 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene family. Endocr Rev. 2005;26:525–82.

    Article  CAS  PubMed  Google Scholar 

  21. Haiman CA, Bernstein L, Berg D, Ingles SA, Salane M, Ursin G. Genetic determinants of mammographic density. Breast Cancer Res. 2002;4:R5.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Stone J, Gurrin LC, Byrnes GB, Schroen CJ, Treloar SA, Padilla EJ, et al. Mammographic density and candidate gene variants: a twins and sisters study. Cancer Epidemiol Biomarkers Prev. 2007;16:1479–84.

    Article  CAS  PubMed  Google Scholar 

  23. Belanger A, Labrie F, Angeli A. Unconjugated and glucuronide steroid levels in human breast cyst fluid. Ann N Y Acad Sci. 1990;586:93–100.

    Article  CAS  PubMed  Google Scholar 

  24. Gunasegaram R, Peh KL, Loganath A, Ratnam SS. Expression of 3beta-hydroxysteroid dehydrogenase-5,4-en isomerase activity by infiltrating ductal human breast carcinoma in vitro. Breast Cancer Res Treat. 1998;50:117–23.

    Article  CAS  PubMed  Google Scholar 

  25. Sasano H, Nagura H, Harada N, Goukon Y, Kimura M. Immunolocalization of aromatase and other steroidogenic enzymes in human breast disorders. Hum Pathol. 1994;25:530–5.

    Article  CAS  PubMed  Google Scholar 

  26. Suzuki T, Darnel AD, Akahira JI, Ariga N, Ogawa S, Kaneko C, et al. 5alpha-reductases in human breast carcinoma: possible modulator of in situ androgenic actions. J Clin Endocrinol Metab. 2001;86:2250–7.

    CAS  PubMed  Google Scholar 

  27. Williams CJ, Barley VL, Blackledge GR, Rowland CG, Tyrrell CJ. Multicentre crossover study of aminoglutethimide and trilostane in advanced postmenopausal breast cancer. Br J Cancer. 1993;68:1210–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Verma S, Tabb MM, Blumberg B. Activation of the steroid and xenobiotic receptor, SXR, induces apoptosis in breast cancer cells. BMC Cancer. 2009;9:3.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schwartz AG, Pashko LL. Dehydroepiandrosterone, glucose-6-phosphate dehydrogenase, and longevity. Ageing Res Rev. 2004;3:171–87.

    Article  CAS  PubMed  Google Scholar 

  30. Lopez-Marure R, Contreras PG, Dillon JS. Effects of dehydroepiandrosterone on proliferation, migration, and death of breast cancer cells. Eur J Pharmacol. 2011;660:268–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by research Grants (MMH-104-25 and MMH-E-106-10) from MacKay Memorial Hospital.

Disclosure

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Liang Liu MD.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2902 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, YC., Chen, CK., Chen, MJ. et al. Expression of 3β-Hydroxysteroid Dehydrogenase Type 1 in Breast Cancer is Associated with Poor Prognosis Independent of Estrogen Receptor Status. Ann Surg Oncol 24, 4033–4041 (2017). https://doi.org/10.1245/s10434-017-6000-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-017-6000-6

Keywords

Navigation