Skip to main content

Advertisement

Log in

Homozygous GNAS 393C-Allele Carriers with Locally Advanced Esophageal Cancer Fail to Benefit from Platinum-Based Preoperative Chemoradiotherapy

  • Thoracic Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Currently, patients with locally advanced esophageal cancer receive neoadjuvant chemoradiotherapy but only about half of these patients benefit from this treatment. GNAS T393C has been shown to predict the postoperative course in solid tumors and may therefore be useful for treatment stratification. The aim of the present study was to determine if the single-nucleotide polymorphism GNAS T393C can be used for treatment stratification in esophageal cancer patients.

Methods

A total of 596 patients underwent surgical resection for esophageal carcinoma from 1996 to 2008; 279 patients received chemoradiotherapy prior to surgery (RTX-SURG group). All patients and a reference group of 820 healthy White individuals were genotyped for GNAS T393C.

Results

The 5-year-survival rate for the 317 patients who underwent esophagectomy as initial treatment (SURG group) was 57 % for homozygous C-allele carriers (n = 99) and 43 % for T-allele carriers (n = 218; log- rank test p = 0.025). Multivariate analysis revealed the GNAS T393C genotype (p = 0.034), pT (p < 0.001), pN (p < 0.001) and age (p < 0.001) as prognostic of survival. Homozygous C-allele carriers with a locally advanced tumor stage (cT3/T4, n = 129) in the SURG group had a 5-year survival rate of 37 %, which, remarkably, exceeded the 5-year survival rate of 30 % for the entire RTX-SURG group (n = 279). In the RTX-SURG group, the GNAS T393C genotype did not show any prognostic significance.

Conclusions

Patients with a locally advanced esophageal cancer and an homozygous GNAS 393C genotype do not benefit from platinum-based neoadjuvant chemoradiotherapy, indicating that these patients should be treated by alternative treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108.

    Article  PubMed  Google Scholar 

  2. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71–96.

    Article  PubMed  Google Scholar 

  3. Bollschweiler E, Wolfgarten E, Gutschow C, Holscher AH. Demographic variations in the rising incidence of esophageal adenocarcinoma in white males. Cancer. 2001;92(3):549–55.

    Article  CAS  PubMed  Google Scholar 

  4. Devesa SS, Blot WJ, Fraumeni JF Jr. Changing patterns in the incidence of esophageal and gastric carcinoma in the United States. Cancer. 1998;83(10):2049–53.

    Article  CAS  PubMed  Google Scholar 

  5. Refaely Y, Krasna MJ. Multimodality therapy for esophageal cancer. Surg Clin North Am. 2002;82(4):729–46.

    Article  PubMed  Google Scholar 

  6. Vallbohmer D, Lenz HJ. Predictive and prognostic molecular markers in outcome of esophageal cancer. Dis Esophagus. 2006;19(6):425–32.

    Article  CAS  PubMed  Google Scholar 

  7. Tepper J, Krasna MJ, Niedzwiecki D, et al. Phase III trial of trimodality therapy with cisplatin, fluorouracil, radiotherapy, and surgery compared with surgery alone for esophageal cancer: CALGB 9781. J Clin Oncol. 2008;26(7):1086–92.

    Article  CAS  PubMed  Google Scholar 

  8. Burmeister BH, Smithers BM, Gebski V, et al. Surgery alone versus chemoradiotherapy followed by surgery for resectable cancer of the oesophagus: a randomised controlled phase III trial. Lancet Oncol. 2005;6(9):659–68.

    Article  PubMed  Google Scholar 

  9. Lee JL, Park SI, Kim SB, et al. A single institutional phase III trial of preoperative chemotherapy with hyperfractionation radiotherapy plus surgery versus surgery alone for resectable esophageal squamous cell carcinoma. Ann Oncol. 2004;15(6):947–54.

    Article  CAS  PubMed  Google Scholar 

  10. Urba SG, Orringer MB, Turrisi A, Iannettoni M, Forastiere A, Strawderman M. Randomized trial of preoperative chemoradiation versus surgery alone in patients with locoregional esophageal carcinoma. J Clin Oncol. 2001;19(2):305–13.

    CAS  PubMed  Google Scholar 

  11. Surgical resection with or without preoperative chemotherapy in oesophageal cancer: a randomised controlled trial. Lancet. 2002;359(9319):1727–33.

  12. Bosset JF, Gignoux M, Triboulet JP, et al. Chemoradiotherapy followed by surgery compared with surgery alone in squamous-cell cancer of the esophagus. N Engl J Med. 1997;337(3):161–7.

    Article  CAS  PubMed  Google Scholar 

  13. Walsh TN, Noonan N, Hollywood D, Kelly A, Keeling N, Hennessy TP. A comparison of multimodal therapy and surgery for esophageal adenocarcinoma. N Engl J Med. 1996;335(7):462–7.

    Article  CAS  PubMed  Google Scholar 

  14. van Hagen P, Hulshof MC, van Lanschot JJ, et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med. 2012;366(22):2074–84.

    Article  PubMed  Google Scholar 

  15. Bollschweiler E, Metzger R, Drebber U, et al. Histological type of esophageal cancer might affect response to neo-adjuvant radiochemotherapy and subsequent prognosis. Ann Oncol. 2009;20(2):231–8.

    Article  CAS  PubMed  Google Scholar 

  16. Schneider PM, Baldus SE, Metzger R, et al. Histomorphologic tumor regression and lymph node metastases determine prognosis following neoadjuvant radiochemotherapy for esophageal cancer: implications for response classification. Ann Surg. 2005;242(5):684–92.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Lehnert S. Modification of postirradiation survival of mammalian cells by intracellular cyclic AMP. Radiat Res. 1975;62(1):107–16.

    Article  CAS  PubMed  Google Scholar 

  18. Grunicke H, Hofmann J, Maly K, et al. The phospholipid- and calcium-dependent protein kinase as a target in tumor chemotherapy. Adv Enzyme Regul. 1989;28:201–16.

    Article  CAS  PubMed  Google Scholar 

  19. Frey UH, Eisenhardt A, Lummen G, et al. The T393C polymorphism of the G alpha s gene (GNAS1) is a novel prognostic marker in bladder cancer. Cancer Epidemiol Biomarkers Prev. 2005;14(4):871–7.

    Article  CAS  PubMed  Google Scholar 

  20. Vashist YK, Kutup A, Musici S, et al. The GNAS1 T393C single nucleotide polymorphism predicts the natural postoperative course of complete resected esophageal cancer. Cell Oncol. 2011;34(4):281–8.

    Article  CAS  Google Scholar 

  21. Japanese Gastric Cancer Association. Japanese classification of gastric carcinoma – 2nd English edition. Gastric Cancer. 1998;1(1):10–24.

    Article  PubMed  Google Scholar 

  22. Sobin LH, Wittekind C, editors. TNM classification of malignant tumours. 5th ed. New York: Wiley; 1997.

    Google Scholar 

  23. Bollschweiler E, Besch S, Drebber U, et al. Influence of neoadjuvant chemoradiation on the number and size of analyzed lymph nodes in esophageal cancer. Ann Surg Oncol. 2010;17(12):3187–94.

    Article  PubMed  Google Scholar 

  24. Frazer KA, Ballinger DG, Cox DR, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449(7164):851–61.

    Article  CAS  PubMed  Google Scholar 

  25. Thurman RE, Rynes E, Humbert R, et al. The accessible chromatin landscape of the human genome. Nature. 2012;489(7414):75–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Gerstein MB, Kundaje A, Hariharan M, et al. Architecture of the human regulatory network derived from ENCODE data. Nature. 2012;489(7414):91–100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Marinescu VD, Kohane IS, Riva A. MAPPER: a search engine for the computational identification of putative transcription factor binding sites in multiple genomes. BMC Bioinform. 2005;6:79.

    Article  Google Scholar 

  28. Xu D, Dwyer J, Li H, Duan W, Liu JP. Ets2 maintains hTERT gene expression and breast cancer cell proliferation by interacting with c-Myc. J Biol Chem. 2008;283(35):23567–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Sjoquist KM, Burmeister BH, Smithers BM, et al. Survival after neoadjuvant chemotherapy or chemoradiotherapy for resectable oesophageal carcinoma: an updated meta-analysis. Lancet Oncol. 2011;12(7):681–92.

    Article  PubMed  Google Scholar 

  30. Vallbohmer D, Holscher AH, DeMeester S, et al. A multicenter study of survival after neoadjuvant radiotherapy/chemotherapy and esophagectomy for ypT0N0M0R0 esophageal cancer. Ann Surg. 2010;252(5):744–9.

    Article  CAS  PubMed  Google Scholar 

  31. Vallbohmer D, Holscher AH, Dietlein M, et al. [18F]-Fluorodeoxyglucose-positron emission tomography for the assessment of histopathologic response and prognosis after completion of neoadjuvant chemoradiation in esophageal cancer. Ann Surg. 2009;250(6):888–94.

    Article  PubMed  Google Scholar 

  32. Schmidt M, Bollschweiler E, Dietlein M, et al. Mean and maximum standardized uptake values in [18F]FDG-PET for assessment of histopathological response in oesophageal squamous cell carcinoma or adenocarcinoma after radiochemotherapy. Eur J Nucl Med Mol Imaging. 2009;36(5):735–44.

    Article  CAS  PubMed  Google Scholar 

  33. Ott K, Weber WA, Lordick F, et al. Metabolic imaging predicts response, survival, and recurrence in adenocarcinomas of the esophagogastric junction. J Clin Oncol. 2006;24(29):4692–8.

    Article  PubMed  Google Scholar 

  34. Otterbach F, Callies R, Frey UH, et al. The T393C polymorphism in the gene GNAS1 of G protein is associated with survival of patients with invasive breast carcinoma. Breast Cancer Res Treat. 2007;105(3):311–7.

    Article  CAS  PubMed  Google Scholar 

  35. Schmitz KJ, Lang H, Frey UH, et al. GNAS1 T393C polymorphism is associated with clinical course in patients with intrahepatic cholangiocarcinoma. Neoplasia. 2007;9(2):159–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L. GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature. 1989;340(6236):692–6.

    Article  CAS  PubMed  Google Scholar 

  37. Yang I, Park S, Ryu M, et al. Characteristics of gsp-positive growth hormone-secreting pituitary tumors in Korean acromegalic patients. Eur J Endocrinol. 1996;134(6):720–6.

    Article  CAS  PubMed  Google Scholar 

  38. Collins MT, Sarlis NJ, Merino MJ, et al. Thyroid carcinoma in the McCune–Albright syndrome: contributory role of activating Gs alpha mutations. J Clin Endocrinol Metab. 2003;88(9):4413–7.

    Article  CAS  PubMed  Google Scholar 

  39. Fragoso MC, Latronico AC, Carvalho FM, et al. Activating mutation of the stimulatory G protein (gsp) as a putative cause of ovarian and testicular human stromal Leydig cell tumors. J Clin Endocrinol Metab. 1998;83(6):2074–8.

    CAS  PubMed  Google Scholar 

  40. Furukawa T, Kuboki Y, Tanji E, et al. Whole-exome sequencing uncovers frequent GNAS mutations in intraductal papillary mucinous neoplasms of the pancreas. Sci Rep. 2011;1:161.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Wu J, Matthaei H, Maitra A, et al. Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci Transl Med. 2011;3(92):92ra66.

  42. Tao H, Cox DR, Frazer KA. Allele-specific KRT1 expression is a complex trait. PLoS Genet. 2006;2(6):e93.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by the Köln Fortune Program of the Faculty of Medicine, University of Cologne and The German Cancer Aid, Bonn.

Conflict of interest

Hakan Alakus, Elfriede Bollschweiler, Arnulf H. Hölscher, Ute Warnecke-Eberz, Kelly A. Frazer, Olivier Harismendy, Andrew M. Lowy, Stefan P. Mönig, Pascal M. Eberz, Martin Maus, Uta Drebber, Winfried Siffert, and Ralf Metzger declare no financial and personal relationships with other people or organizations that could inappropriately influence (bias) their work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Alakus MD.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Supplementary Fig. 1

Kaplan–Meier Survival curve for 408 patients with locally advanced esophageal cancer based on their treatment (TIFF 2724 kb)

Supplementary material 3 (TIFF 2065 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alakus, H., Bollschweiler, E., Hölscher, A.H. et al. Homozygous GNAS 393C-Allele Carriers with Locally Advanced Esophageal Cancer Fail to Benefit from Platinum-Based Preoperative Chemoradiotherapy. Ann Surg Oncol 21, 4375–4382 (2014). https://doi.org/10.1245/s10434-014-3843-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-014-3843-y

Keywords

Navigation