Skip to main content

Advertisement

Log in

Suppression of Dicer Increases Sensitivity to Gefitinib in Human Lung Cancer Cells

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Accumulating evidence is revealing an important role of microRNA (miRNA) in tumor progression and chemotherapeutic resistance. Dicer is a cytoplasmic endoribonuclease type III crucial for production of mature miRNAs. The aberrant expression of Dicer has also been reportedly associated with clinical aggressiveness, prognosis, and patient survival in various cancer types. However, the molecular mechanisms of Dicer in acquired gefitinib resistance are still not clear.

Methods

In this study, we analyzed the protein level of Dicer between gefitinib-sensitive (PC9) and gefitinib-resistant (PC9/GR) non-small-cell lung cancer (NSCLC) cell lines by Western blot analysis. Silence and overexpression of the Dicer were performed to investigate the effects on gefitinib sensitivity, as assessed by (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay and sub-G1 assay of flow cytometry. To further explore the mechanism of chemoresistance, we examined whether Dicer knockdown led to modulating specific miRNAs and its miRNA target genes.

Results

Dicer expression was significantly increased in PC9/GR compared with PC9 cells. Knockdown of Dicer restores gefitinib sensitivity in resistant cells, and overexpression of Dicer enhances resistance to gefitinib in sensitive cells. Silencing of Dicer induces sensitivity to gefitinib in NSCLC cells through the downregulation of miR-30b/c and miR-221/222 to increase the protein level of caspase-3, resulting in an increase in gefitinib-induced apoptosis.

Conclusions

Dicer contributes to the resistance to gefitinib in lung cancer. These results indicate that Dicer may be a target for diagnosis and therapy of patients with resistance to gefitinib.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 2008;83:584–94.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Muhsin M, Graham J, Kirkpatrick P. Gefitinib. Nat Rev Drug Discov. 2003;2:515–6.

    Article  CAS  PubMed  Google Scholar 

  4. Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (the IDEAL 1 trial) [corrected]. J Clin Oncol. 2003;21:2237–46.

    Article  CAS  PubMed  Google Scholar 

  5. Jackman D, Pao W, Riely GJ, et al. Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J Clin Oncol. 2010;28:357–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.

    Article  CAS  PubMed  Google Scholar 

  7. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6:376–85.

    Article  CAS  PubMed  Google Scholar 

  8. Zheng T, Wang J, Chen X, Liu L. Role of microRNA in anticancer drug resistance. Int J Cancer. 2010;126:2–10.

    Article  CAS  PubMed  Google Scholar 

  9. Hummel R, Hussey DJ, Haier J. MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur J Cancer. 2010;46:298–311.

    Article  CAS  PubMed  Google Scholar 

  10. Melo SA, Kalluri R. Molecular pathways: microRNAs as cancer therapeutics. Clin Cancer Res. 2012;18:4234–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Garofalo M, Croce CM. MicroRNAs as therapeutic targets in chemoresistance. Drug Resist Updat. 2013;16:47–59.

    Article  CAS  PubMed  Google Scholar 

  12. Bu Y, Lu C, Bian C, et al. Knockdown of Dicer in MCF-7 human breast carcinoma cells results in G1 arrest and increased sensitivity to cisplatin. Oncol Rep. 2009;21:13–7.

    CAS  PubMed  Google Scholar 

  13. Ueda R, Kohanbash G, Sasaki K, et al. Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1. Proc Natl Acad Sci U S A. 2009;106:10746–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Selever J, Gu G, Lewis MT, et al. Dicer-mediated upregulation of BCRP confers tamoxifen resistance in human breast cancer cells. Clin Cancer Res. 2011;17:6510–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Pouliot LM, Shen DW, Suzuki T, Hall MD, Gottesman MM. Contributions of microRNA dysregulation to cisplatin resistance in adenocarcinoma cells. Exp Cell Res. 2013;319:566–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Vincenzi B, Zoccoli A, Schiavon G, et al. Dicer and Drosha expression and response to Bevacizumab-based therapy in advanced colorectal cancer patients. Eur J Cancer. 2013;49:1501–8.

    Article  CAS  PubMed  Google Scholar 

  17. Garofalo M, Romano G, Di Leva G, et al. EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med. 2012;18:74–82.

    CAS  Google Scholar 

  18. Martello G, Rosato A, Ferrari F, et al. A MicroRNA targeting dicer for metastasis control. Cell. 2010;141:1195–207.

    Article  CAS  PubMed  Google Scholar 

  19. Edge SB. American Joint Committee on Cancer, American Cancer Society AJCC cancer staging handbook: from the AJCC cancer staging manual. 7th ed. New York: Springer; 2010.

    Google Scholar 

  20. Sugito N, Ishiguro H, Kuwabara Y, et al. RNASEN regulates cell proliferation and affects survival in esophageal cancer patients. Clin Cancer Res. 2006;12:7322–8.

    Article  CAS  PubMed  Google Scholar 

  21. Watanabe H, Yamamoto S, Kunitoh H, et al. Tumor response to chemotherapy: the validity and reproducibility of RECIST guidelines in NSCLC patients. Cancer Sci. 2003;94:1015–20.

    Article  CAS  PubMed  Google Scholar 

  22. Maemondo M, Inoue A, Kobayashi K, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362:2380–8.

    Article  CAS  PubMed  Google Scholar 

  23. Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7:169–81.

    Article  CAS  PubMed  Google Scholar 

  24. Karube Y, Tanaka H, Osada H, et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci. 2005;96:111–5.

    Article  CAS  PubMed  Google Scholar 

  25. Cummins JM, He Y, Leary RJ, et al. The colorectal microRNAome. Proc Natl Acad Sci U S A. 2006;103:3687–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Koscianska E, Starega-Roslan J, Krzyzosiak WJ. The role of Dicer protein partners in the processing of microRNA precursors. PLoS One. 2011;6:e28548.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.

    Article  CAS  PubMed  Google Scholar 

  28. Huang CP, Tsai MF, Chang TH, et al. ALDH-positive lung cancer stem cells confer resistance to epidermal growth factor receptor tyrosine kinase inhibitors. Cancer Lett. 2013;328:144–51.

    Article  CAS  PubMed  Google Scholar 

  29. Weiss GJ, Bemis LT, Nakajima E, et al. EGFR regulation by microRNA in lung cancer: correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. Ann Oncol. 2008;19:1053–9.

    Article  CAS  PubMed  Google Scholar 

  30. Tokumaru S, Suzuki M, Yamada H, Nagino M, Takahashi T. let-7 regulates Dicer expression and constitutes a negative feedback loop. Carcinogenesis. 2008;29:2073–7.

    Article  CAS  PubMed  Google Scholar 

  31. Jakymiw A, Patel RS, Deming N, et al. Overexpression of dicer as a result of reduced let-7 microRNA levels contributes to increased cell proliferation of oral cancer cells. Genes Chromosomes Cancer. 2010;49:549–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004;64:3753–6.

    Article  CAS  PubMed  Google Scholar 

  33. Friedrich K, Wieder T, Von Haefen C, et al. Overexpression of caspase-3 restores sensitivity for drug-induced apoptosis in breast cancer cell lines with acquired drug resistance. Oncogene. 2001;20:2749–60.

    Article  CAS  PubMed  Google Scholar 

  34. Yang XH, Sladek TL, Liu X, Butler BR, Froelich CJ, Thor AD. Reconstitution of caspase 3 sensitizes MCF-7 breast cancer cells to doxorubicin- and etoposide-induced apoptosis. Cancer Res. 2001;61:348–54.

    CAS  PubMed  Google Scholar 

  35. Devarajan E, Sahin AA, Chen JS, et al. Down-regulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene. 2002;21:8843–51.

    Article  CAS  PubMed  Google Scholar 

  36. Yang X, Zheng F, Xing H, et al. Resistance to chemotherapy-induced apoptosis via decreased caspase-3 activity and overexpression of antiapoptotic proteins in ovarian cancer. J Cancer Res Clin Oncol. 2004;130:423–8.

    Article  CAS  PubMed  Google Scholar 

  37. Yoo J, Kim CH, Song SH, et al. Expression of caspase-3 and c-myc in non-small cell lung cancer. Cancer Res Treat. 2004;36:303–7.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Okamoto K, Okamoto I, Hatashita E, et al. Overcoming erlotinib resistance in EGFR mutation-positive non-small cell lung cancer cells by targeting survivin. Mol Cancer Ther. 2012;11:204–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the National Science Council, Taiwan (NSC 102-2314-B-039-200, NSC 102-2314-B-038-028-MY3, and NSC 101-2320-B-400-016-MY3); from National Health Research Institutes, Taiwan (CA-102-PP-41 and CA-103-PP-35); from China Medical University Hospital (DMR-101-014); and from China Medical University (CMU99-TC-22 and CMU100-S-22).

Disclosure

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen-Liang Su PhD.

Additional information

Jui-Chieh Chen and Yen-Hao Su contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Supplementary material 2 (DOCX 23 kb)

10434_2014_3673_MOESM3_ESM.tif

Oncomine analysis of Dicer expression related to sensitivity to gefitinib in lung cancer cell lines. Statistics from individual studies were also obtained from the Oncomine cancer database (http://www.oncomine.com/). The fold change and P-values are shown within box plot. (TIFF 1761 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, JC., Su, YH., Chiu, CF. et al. Suppression of Dicer Increases Sensitivity to Gefitinib in Human Lung Cancer Cells. Ann Surg Oncol 21 (Suppl 4), 555–563 (2014). https://doi.org/10.1245/s10434-014-3673-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-014-3673-y

Keywords

Navigation