Skip to main content
Log in

Three-dimensional Optical Coherence Tomography for Optical Biopsy of Lymph Nodes and Assessment of Metastatic Disease

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Numerous techniques have been developed for localizing lymph nodes before surgical resection and for their histological assessment. Nondestructive high-resolution transcapsule optical imaging of lymph nodes offers the potential for in situ assessment of metastatic involvement, potentially during surgical procedures.

Methods

Three-dimensional optical coherence tomography (3-D OCT) was used for imaging and assessing resected popliteal lymph nodes from a preclinical rat metastatic tumor model over a 9-day time-course study after tumor induction. The spectral-domain OCT system utilized a center wavelength of 800 nm, provided axial and transverse resolutions of 3 and 12 μm, respectively, and performed imaging at 10,000 axial scans per second.

Results

OCT is capable of providing high-resolution label-free images of intact lymph node microstructure based on intrinsic optical scattering properties with penetration depths of ~1–2 mm. The results demonstrate that OCT is capable of differentiating normal, reactive, and metastatic lymph nodes based on microstructural changes. The optical scattering and structural changes revealed by OCT from day 3 to day 9 after the injection of tumor cells into the lymphatic system correlate with inflammatory and immunological changes observed in the capsule, precortical regions, follicles, and germination centers found during histopathology.

Conclusions

We report for the first time a longitudinal study of 3-D transcapsule OCT imaging of intact lymph nodes demonstrating microstructural changes during metastatic infiltration. These results demonstrate the potential of OCT as a technique for intraoperative, real-time in situ 3-D optical biopsy of lymph nodes for the intraoperative staging of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Willard-Mack CL. Normal structure, function, and histology of lymph nodes. Toxicol Pathol. 2006;34:409–24.

    Article  PubMed  Google Scholar 

  2. Torabi M, Aquino SL, Harisinghani MG. Current concepts in lymph node imaging. J Nucl Med. 2004;45:1509–18.

    PubMed  Google Scholar 

  3. Gadd M. Sentinel lymph node biopsy for staging early breast cancer: minimizing the trade-off by maximizing the accuracy. Ann Oncol. 2009;20:973–5.

    Article  PubMed  Google Scholar 

  4. Quan ML, McCready D. The evolution of lymph node assessment in breast cancer. J Surg Oncol. 2009;99:194–8.

    Article  PubMed  Google Scholar 

  5. Szabo BK, Aspelin P, Kristoffersen WM, Tot T, Bone B. Invasive breast cancer: correlation of dynamic mr features with prognostic factors. Eur Radiol. 2003;13:2425–35.

    Article  PubMed  Google Scholar 

  6. Fischbein NJ, Noworolski SM, Henry RG, Kaplan MJ, Dillon WP, Nelson SJ. Assessment of metastatic cervical adenopathy using dynamic contrast-enhanced MR imaging. Am J Neuroradiol. 2003;24:301–11.

    PubMed  Google Scholar 

  7. Kim SH, Kim SC, Choi BI, Han MC. Uterine cervical carcinoma: evaluation of pelvic lymph node metastasis with MR imaging. Radiology. 1994;190:807–11.

    PubMed  CAS  Google Scholar 

  8. Harisinghani MG, Barentsz J, Hahn PF, et al. Noninvasive detection of clinically occult lymph node metastases in prostate cancer. N Engl J Med. 2003;348:2491–9.

    Article  PubMed  Google Scholar 

  9. Anzai Y, Blackwell KE, Hirschowitz SL, et al. Initial clinical experience with dextran-coated superparamagnetic iron oxide for detection of lymph node metastases in patients with head and neck cancer. Radiology. 1994;192:709–15.

    PubMed  CAS  Google Scholar 

  10. Krag D, Weaver D, Ashikaga T, et al. The sentinel node in breast cancer—a multicenter validation study. N Engl J Med. 1998;339:941–6.

    Article  PubMed  CAS  Google Scholar 

  11. Blessing WD, Stolier AJ, Teng SC, Bolton JS, Fuhrman GM. A comparison of methylene blue and lymphazurin in breast cancer sentinel node mapping. Am J Surg. 2002;184:341–5.

    Article  PubMed  Google Scholar 

  12. Schaafsma BE, Mieog JS, Hutteman M, et al. The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J Surg Oncol. 2011;104:323–32.

    Article  PubMed  CAS  Google Scholar 

  13. Sampath L, Wang W, Sevick-Muraca EM. Near-infrared fluorescent optical imaging for nodal staging. J Biomed Opt. 2008;13:041312.

    Article  PubMed  Google Scholar 

  14. Rosbach KJ, Shin D, Muldoon TJ, et al. High-resolution fiber optic microscopy with fluorescent contrast enhancement for the identification of axillary lymph node metastases in breast cancer: a pilot study. Biomed Opt Express. 2010;1:911–22.

    Article  PubMed  Google Scholar 

  15. Nguyen NQ, Biankin AV, Leong RW, et al. Real time intraoperative confocal laser microscopy-guided surgery. Ann Surg. 2009;249:735–7.

    Article  PubMed  Google Scholar 

  16. Fujimoto JG, Brezinski ME, Tearney GJ, et al. Optical biopsy and imaging using optical coherence tomography. Nat Med. 1995:1:970–2.

    Article  PubMed  CAS  Google Scholar 

  17. Tearney GJ, Brezinski ME, Bouma BE, Boppart SA, Pitris C, Southern JF, Fujimoto JG. In vivo endoscopic optical biopsy with optical coherence tomography. Science. 1997;276:2037–9.

    Article  PubMed  CAS  Google Scholar 

  18. Boppart SA, Bouma BE, Pitris C, Southern JF, Brezinski ME, Fujimoto JG. In vivo cellular optical coherence tomography imaging. Nat Med. 1998;4:861–5.

    Article  PubMed  CAS  Google Scholar 

  19. Brezinski ME, Tearney GJ, Boppart SA, Swanson EA, Southern JF, Fujimoto JG. Optical biopsy with optical coherence tomography: feasibility for surgical diagnostics. J Surg Res. 1997;71:32–40.

    Article  PubMed  CAS  Google Scholar 

  20. Boppart SA, Herrmann JM, Pitris C, Stamper DL, Brezinski ME, Fujimoto JG. High-resolution optical coherence tomography guided laser ablation of surgical tissue. J Surg Res. 1999;82:275–84.

    Article  PubMed  CAS  Google Scholar 

  21. Boppart SA, Bouma BE, Pitris C, Tearney GJ, Southern JF, Brezinski ME, Fujimoto JG. Intraoperative assessment of microsurgery with three-dimensional optical coherence tomography. Radiology. 1998;208:81–6.

    PubMed  CAS  Google Scholar 

  22. Nguyen FT, Zysk AM, Chaney EJ, et al. Intraoperative evaluation of breast tumor margins with optical coherence tomography. Cancer Res. 2009;69:8790–6.

    Article  PubMed  CAS  Google Scholar 

  23. Luo W, Nguyen FT, Zysk AM, et al. Optical biopsy of lymph node morphology using optical coherence tomography. Tech Cancer Res Treat. 2005;4:539–47.

    Google Scholar 

  24. McLaughlin RA, Scolaro L, Robbins P, Hamza S, Saunders C, Sampson DD. Imaging of human lymph nodes using optical coherence tomography: potential for staging cancer. Cancer Res. 2010;70:2579–84.

    Article  PubMed  CAS  Google Scholar 

  25. Nguyen FT, Zysk AM, Chaney EJ, et al. Optical coherence tomography: the intraoperative assessment of lymph nodes in breast cancer. IEEE Eng Med Biol. 2010;29:63–70.

    Article  Google Scholar 

  26. Taback B, Hashimoto K, Kuo CT, Chan A, Giuliano AE, Hoon DS. Molecular lymphatic mapping of the sentinel lymph node. Am J Pathol. 2002;161:1153–61.

    Article  PubMed  CAS  Google Scholar 

  27. Klein T, Wieser W, Eigenwillig CM, Biedermann BR, Huber R. Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser. Opt Express. 2011;19:3044–62.

    Article  PubMed  CAS  Google Scholar 

  28. Tsai TH, Zhou C, Adler DC, Fujimoto JG. Frequency comb swept lasers. Opt Express. 2009;17:21257–70.

    Article  PubMed  CAS  Google Scholar 

  29. de Boer M, van Deurzen CHM, van Dijck JAAM, et al. Micrometastases or isolated tumor cells and the outcome of breast cancer. N Engl J Med. 2009;361:653–63.

    Article  PubMed  Google Scholar 

  30. Boppart SA, Bouma BE, Pitris C, Tearney GJ, Brezinski ME, Fujimoto JG. Forward-imaging instruments for optical coherence tomographic imaging. Opt Lett. 1997;22:1618–20.

    Article  PubMed  CAS  Google Scholar 

  31. Jung W, Kim J, Jeon M, Chaney EJ, Stewart CJ, Boppart SA. Handheld optical coherence tomography scanner for primary care diagnostics. IEEE Trans Biomed Eng. 2011;58:741–4.

    Article  PubMed  Google Scholar 

  32. Zysk AM, Nguyen FT, Chaney EJ, et al. Clinical feasibility of microscopically-guided breast needle biopsy using a fiber optic probe with computer-aided detection. Tech Cancer Res Treat. 2009;8:315–22.

    Google Scholar 

  33. Li X, Chudoba C, Ko T, Pitris C, Fujimoto JG. Imaging needle for optical coherence tomography. Opt Lett. 2000;25:1520–2.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Stephen Boppart is co-founder and chief medical officer of Diagnostic Photonics Inc., which is commercializing Interferometric Synthetic Aperture Microscopy for intraoperative tumor margin assessment. He also receives royalties from patents licensed by the Massachusetts Institute of Technology related to OCT. This research was supported in part by grants from the National Institutes of Health NIBIB, R01 EB012479, and NIBIB, R01 EB013723 (S.A.B.). The authors thank Darold Spillman for his assistance with project coordination and information technology management, and Freddy T. Nguyen for helpful discussions and technical support during the experimental studies. Additional information can be found at http://biophotonics.illinois.edu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen A. Boppart MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

John, R., Adie, S.G., Chaney, E.J. et al. Three-dimensional Optical Coherence Tomography for Optical Biopsy of Lymph Nodes and Assessment of Metastatic Disease. Ann Surg Oncol 20, 3685–3693 (2013). https://doi.org/10.1245/s10434-012-2434-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-012-2434-z

Keywords

Navigation