Skip to main content

Advertisement

Log in

MDM2 is Overexpressed and Regulated by the Eukaryotic Translation Initiation Factor 4E (eIF4E) in Human Squamous Cell Carcinoma of Esophagus

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

We investigated the association between the increased eukaryotic translation initiation factor 4E (eIF4E) level and MDM2 overexpression in the esophageal cancer tissue and cells.

Methods

This was a retrospective study of specimens from esophageal cancer patients treated over a 5-year period in a Taiwan university hospital. The predictor variable was eIF4E level in esophageal tumors and CE48T/VGH and TE6 esophageal carcinoma cell lines. The main outcome variable was MDM2 overexpression. Appropriate descriptive and univariate statistics were computed, and a P value of <0.05 was considered statistically significant.

Results

There were two study sample groups. Immunohistochemistry analyses of the first sample group (51 esophageal tumors) revealed that 19 specimens demonstrated MDM2 elevation and 20 specimens had eIF4E overexpression. eIF4E elevation was evidenced by accumulation of the protein in the cytoplasm. There was a significant association between the eIF4E and MDM2 expression (P < 0.001). Western blot analysis and semiquantitative reverse transcriptase–polymerase chain reaction of the second specimen group (20 pairs of tumors and normal tissues) revealed the co-elevation of MDM2 and eIF4E (P = 0.008). There was no increased mdm2 transcript in most of the specimens. Without significant alterations in the mdm2 mRNA level and subcellular distribution, MDM2 protein was upregulated in CE48T/VGH cultured cells expressing ectopic eIF4E. Conversely, reduction of eIF4E by specific siRNA enabled TE6 cells synthesizing reduced amounts of MDM2.

Conclusions

Our findings indicate that MDM2 protein levels are strongly associated with and regulated by eIF4E in a posttranscriptional mechanism in esophageal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Culjkovic B, Topisirovic I, Borden KL. Controlling gene expression through RNA regulons: the role of the eukaryotic translation initiation factor eIF4E. Cell Cycle. 2007;6:65–9.

    Article  PubMed  CAS  Google Scholar 

  2. De Benedetti A, Graff JR. eIF-4E expression and its role in malignancies and metastases. Oncogene. 2004;23:3189–99.

    Article  PubMed  Google Scholar 

  3. De Benedetti A, Harris AL. eIF4E expression in tumors: its possible role in progression of malignancies. Int J Biochem Cell Biol. 1999;31:59–72.

    Article  PubMed  Google Scholar 

  4. Goodfellow IG, Roberts LO. Eukaryotic initiation factor 4E. Int J Biochem Cell Biol. 2008;40:2675–80.

    Article  PubMed  CAS  Google Scholar 

  5. Wendel HG, Silva RL, Malina A, et al. Dissecting eIF4E action in tumorigenesis. Genes Dev. 2007;21:3232–7.

    Article  PubMed  CAS  Google Scholar 

  6. Hershey JWB, Miyamoto S. Translational Control and Cancer. Translational Control of Gene Expression. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2000.

    Google Scholar 

  7. Salehi Z, Mashayekhi F. Expression of the eukaryotic translation initiation factor 4E (eIF4E) and 4E-BP1 in esophageal cancer. Clin Biochem. 2006;39:404–9.

    Article  PubMed  CAS  Google Scholar 

  8. Gingras AC, Raught B, Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem. 1999;68:913–63.

    Article  PubMed  CAS  Google Scholar 

  9. Lazaris-Karatzas A, Montine KS, Sonenberg N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature. 1990;345:544–7.

    Article  PubMed  CAS  Google Scholar 

  10. Avdulov S, Li S, Michalek V, et al. Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells. Cancer Cell. 2004;5:553–63.

    Article  PubMed  CAS  Google Scholar 

  11. Moerke NJ, Aktas H, Chen H, et al. Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell. 2007;128:257–67.

    Article  PubMed  CAS  Google Scholar 

  12. Gray NK, Wickens M. Control of translation initiation in animals. Annu Rev Cell Dev Biol. 1998;14:399–458.

    Article  PubMed  CAS  Google Scholar 

  13. Sonenberg N. eIF4E, the mRNA cap-binding protein: from basic discovery to translational research. Biochem Cell Biol. 2008;86:178–83.

    Article  PubMed  CAS  Google Scholar 

  14. Dever TE. Gene-specific regulation by general translation factors. Cell. 2002;108:545–56.

    Article  PubMed  CAS  Google Scholar 

  15. Rajasekhar VK, Viale A, Socci ND, et al. Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes. Mol Cell. 2003;12:889–901.

    Article  PubMed  CAS  Google Scholar 

  16. Mamane Y, Petroulakis E, Martineau Y, et al. Epigenetic activation of a subset of mRNAs by eIF4E explains its effects on cell proliferation. PLoS One. 2007;2:e242.

    Article  PubMed  Google Scholar 

  17. Stommel JM, Wahl GM. A new twist in the feedback loop: stress-activated MDM2 destabilization is required for p53 activation. Cell Cycle. 2005;4:411–7.

    Article  PubMed  CAS  Google Scholar 

  18. Cordon-Cardo C, Latres E, Drobnjak M, et al. Molecular abnormalities of mdm2 and p53 genes in adult soft tissue sarcomas. Cancer Res. 1994;54:794–9.

    PubMed  CAS  Google Scholar 

  19. Leach FS, Tokino T, Meltzer P, et al. p53 Mutation and MDM2 amplification in human soft tissue sarcomas. Cancer Res. 1993;53:2231–4.

    PubMed  CAS  Google Scholar 

  20. Higashiyama M, Doi O, Kodama K, et al. MDM2 gene amplification and expression in non-small-cell lung cancer: immunohistochemical expression of its protein is a favourable prognostic marker in patients without p53 protein accumulation. Br J Cancer 1997;75:1302–8.

    Article  PubMed  CAS  Google Scholar 

  21. Xue Q, Sano T, Kashiwabara K, Oyama T, Nakajima T. Aberrant expression of pRb, p16, p14ARF, MDM2, p21 and p53 in squamous cell carcinomas of lung. Jpn J Cancer Res. 2001;92:285–92.

    PubMed  CAS  Google Scholar 

  22. Cheng TH, Hsu PK, Li AF, et al. Correlation of p53, MDM2 and p14(ARF) protein expression in human esophageal squamous cell carcinoma. J Cancer Res Clin Oncol. 2009;135:1577–82.

    Article  PubMed  CAS  Google Scholar 

  23. Arora S, Mathew R, Mathur M, Chattopadhayay TK, Ralhan R. Alterations in MDM2 expression in esophageal squamous cell carcinoma: relationship with p53 status. Pathol Oncol Res. 2001;7:203–8.

    Article  PubMed  CAS  Google Scholar 

  24. Shibagaki I, Tanaka H, Shimada Y, et al. p53 mutation, murine double minute 2 amplification, and human papillomavirus infection are frequently involved but not associated with each other in esophageal squamous cell carcinoma. Clin Cancer Res. 1995;1:769–73.

    PubMed  CAS  Google Scholar 

  25. Capoulade C, Bressac-de Paillerets B, et al. Overexpression of MDM2, due to enhanced translation, results in inactivation of wild-type p53 in Burkitt’s lymphoma cells. Oncogene. 1998;16:1603–10.

    Article  PubMed  CAS  Google Scholar 

  26. Landers JE, Cassel SL, George DL. Translational enhancement of mdm2 oncogene expression in human tumor cells containing a stabilized wild-type p53 protein. Cancer Res. 1997;57:3562–8.

    PubMed  CAS  Google Scholar 

  27. Kao CL, Hsu HS, Chen HW, Cheng TH. Rapamycin increases the p53/MDM2 protein ratio and p53-dependent apoptosis by translational inhibition of mdm2 in cancer cells. Cancer Lett. 2009;286:250–9.

    Article  PubMed  CAS  Google Scholar 

  28. Xiong L, Kou F, Yang Y, Wu J. A novel role for IGF-1R in p53-mediated apoptosis through translational modulation of the p53-Mdm2 feedback loop. J Cell Biol. 2007;178:995–1007.

    Article  PubMed  CAS  Google Scholar 

  29. Greene FL, Page DL, Fleming ID, et al. AJCC cancer staging manual. 6th ed. New York: Springer, 2002.

    Book  Google Scholar 

  30. Lai MC, Tarn WY. Hypophosphorylated ASF/SF2 binds TAP and is present in messenger ribonucleoproteins. J Biol Chem. 2004;279:31745–9.

    Article  PubMed  CAS  Google Scholar 

  31. Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KL. eIF4E is a central node of an RNA regulon that governs cellular proliferation. J Cell Biol. 2006;175:415–26.

    Article  PubMed  CAS  Google Scholar 

  32. Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KL. eIF4E promotes nuclear export of cyclin D1 mRNAs via an element in the 3′ UTR. J Cell Biol. 2005;169:245–56.

    Article  PubMed  CAS  Google Scholar 

  33. Moumen A, Patane S, Porras A, Dono R, Maina F. Met acts on Mdm2 via mTOR to signal cell survival during development. Development. 2007;134:1443–51.

    Article  PubMed  CAS  Google Scholar 

  34. Wade M, Wahl GM. Targeting Mdm2 and Mdmx in cancer therapy: better living through medicinal chemistry? Mol Cancer Res. 2009;7:1–11.

    Article  PubMed  CAS  Google Scholar 

  35. Momand J, Jung D, Wilczynski S, Niland J. The MDM2 gene amplification database. Nucleic Acids Res. 1998;26:3453–9.

    Article  PubMed  CAS  Google Scholar 

  36. Oliner JD, Kinzler KW, Meltzer PS, et al. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature. 1992;358:80–3.

    Article  PubMed  CAS  Google Scholar 

  37. Morgan RJ, Newcomb PV, Hardwick RH, Alderson D. Amplification of cyclin D1 and MDM-2 in oesophageal carcinoma. Eur J Surg Oncol. 1999;25:364–7.

    Article  PubMed  CAS  Google Scholar 

  38. Esteve A, Lehman T, Jiang W, et al. Correlation of p53 mutations with epidermal growth factor receptor overexpression and absence of mdm2 amplification in human esophageal carcinomas. Mol Carcinog. 1993;8:306–11.

    Article  PubMed  CAS  Google Scholar 

  39. Ishizuka T, Tanabe C, Sakamoto H, et al. Gene amplification profiling of esophageal squamous cell carcinomas by DNA array CGH. Biochem Biophys Res Commun. 2002;296:152–5.

    Article  PubMed  CAS  Google Scholar 

  40. Takahashi K, Miyashita M, Makino H, et al. Expression of Akt and Mdm2 in human esophageal squamous cell carcinoma. Exp Mol Pathol. 2009;87:42–7.

    Article  PubMed  CAS  Google Scholar 

  41. Taniere P, Martel-Planche G, Puttawibul P, et al. TP53 mutations and MDM2 gene amplification in squamous-cell carcinomas of the esophagus in south Thailand. Int J Cancer. 2000;88:223–7.

    Article  PubMed  CAS  Google Scholar 

  42. Zhu D, Wang L, Zhang C, et al. No evidence for the amplifications of MDM2 and C-myc genes involved in the genetic susceptibility to esophageal cancer in a high-risk area of north China. Cancer Genet Cytogenet. 1996;89:184–5.

    Article  PubMed  CAS  Google Scholar 

  43. Jin X, Turcott E, Englehardt S, Mize GJ, Morris DR. The two upstream open reading frames of oncogene mdm2 have different translational regulatory properties. J Biol Chem. 2003;278:25716–21.

    Article  PubMed  CAS  Google Scholar 

  44. Jones SN, Hancock AR, Vogel H, et al. Overexpression of Mdm2 in mice reveals a p53-independent role for Mdm2 in tumorigenesis. Proc Natl Acad Sci USA. 1998;95:15608–12.

    Article  PubMed  CAS  Google Scholar 

  45. Seki N, Takasu T, Mandai K, et al. Expression of eukaryotic initiation factor 4E in atypical adenomatous hyperplasia and adenocarcinoma of the human peripheral lung. Clin Cancer Res. 2002;8:3046–53.

    PubMed  CAS  Google Scholar 

  46. Li BD, Gruner JS, Abreo F, et al. Prospective study of eukaryotic initiation factor 4E protein elevation and breast cancer outcome. Ann Surg. 2002;235:732–8.

    Article  PubMed  Google Scholar 

  47. Chen CN, Hsieh FJ, Cheng YM, Lee PH, Chang KJ. Expression of eukaryotic initiation factor 4E in gastric adenocarcinoma and its association with clinical outcome. J Surg Oncol. 2004;86:22–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Grant sponsor: National Science Council; grant numbers: NSC96-2314-B-075-027, NSC97-2314-B-075-060, NSC97-2320-B-010-025; grant sponsor: Department of Experimental Surgery, Taipei Veterans General Hospital; grant numbers: V98C1-082; grant sponsor: “Aim for the Top University Plan” grant from the Ministry of Education of the Republic of China; Lung Cancer Foundation in Memory of Dr. K.S. Lu. We thank Kelly Su for secretarial assistance and Dr. Fen-Hwa Wong for providing esophageal squamous carcinoma cell lines. This study was approved by the institutional review board of the Taipei Veterans General Hospital on July 29, 2008 (No. 97-07-14A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han-Shui Hsu MD, PhD or Tzu-Hao Cheng PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, HS., Chen, HW., Kao, CL. et al. MDM2 is Overexpressed and Regulated by the Eukaryotic Translation Initiation Factor 4E (eIF4E) in Human Squamous Cell Carcinoma of Esophagus. Ann Surg Oncol 18, 1469–1477 (2011). https://doi.org/10.1245/s10434-010-1428-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-010-1428-y

Keywords

Navigation