Skip to main content

Advertisement

Log in

Biobanking of Human Pancreas Cancer Tissue: Impact of Ex-Vivo Procurement Times on RNA Quality

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Tissue banking has become a major initiative at many oncology centers. The influence of warm ex-vivo ischemia times, storage times, and biobanking protocols on RNA integrity and subsequent microarray data is not well documented.

Methods

A prospective institutional review board–approved protocol for the banking of abdominal neoplasms was initiated at Memorial Sloan-Kettering Cancer Center in 2001. Sixty-four representative pancreas cancer specimens snap-frozen at various ex-vivo procurement times (≤10 min, 11–30 min, 31–60 min, >1 h) and banked during three time periods (2001–2004, 2004–2006, 2006–2008) were processed. RNA integrity was determined by microcapillary electrophoresis using the RNA integrity number (RIN) algorithm and by results of laser-capture microdissection (LCM).

Results

Overall, 42% of human pancreas cancer specimens banked under a dedicated protocol yielded RNA with a RIN of ≥7. Limited warm ex-vivo ischemia times did not negatively impact RNA quality (percentage of tissue with total RNA with RIN of ≥7 for ≤10 min, 42%; 11–30 min, 58%; 31–60 min, 33%; >60 min, 42%), and long-term storage of banked pancreas cancer biospecimens did not negatively influence RNA quality (total RNA with RIN of ≥7 banked 2001–2004, 44%; 2004–2006, 38%; 2006–2008, 50%). RNA retrieved from pancreatic cancer samples with RIN of ≥7 subject to LCM yielded RNA suitable for further downstream applications.

Conclusions

Fresh-frozen pancreas tissue banked within a standardized research protocol yields high-quality RNA in approximately 50% of specimens and can be used for enrichment by LCM. Quality of tissues of the biobank were not adversely impacted by limited variations of warm ischemia times or different storage periods. This study shows the challenges and investments required to initiate and maintain high-quality tissue repositories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Garman KS, Nevins JR, Potti A. Genomic strategies for personalized cancer therapy. Hum Mol Genet. 2007;16(Spec No. 2): R226–32.

    Article  CAS  PubMed  Google Scholar 

  2. Acharya CR, Hsu DS, Anders CK, et al. Gene expression signatures, clinicopathological features, and individualized therapy in breast cancer. JAMA. 2008;299:1574–87.

    Article  CAS  PubMed  Google Scholar 

  3. Brenton JD, Carey LA, Ahmed AA, Caldas C. Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J Clin Oncol. 2005;23:7350–60.

    Article  CAS  PubMed  Google Scholar 

  4. Compton C. Getting to personalized cancer medicine: taking out the garbage. Cancer. 2007;110:1641–3.

    Article  PubMed  Google Scholar 

  5. National Cancer Institute. NCI best practices for biospecimen resources. 2007. http://www.biospecimens.cancer.gov/practices/.

  6. Srivastava S, Gray JW, Reid BJ, et al; Translational Research Working Group. Translational Research Working Group developmental pathway for biospecimen-based assessment modalities. Clin Cancer Res. 2008;14:5672–7.

    Article  PubMed  Google Scholar 

  7. Hwang RF, Wang H, Lara A, et al. Development of an integrated biospecimen bank and multidisciplinary clinical database for pancreatic cancer. Ann Surg Oncol. 2008;15:1356–66.

    Article  PubMed  Google Scholar 

  8. Albores-Saavedra J, Heffess C, Hruban RH, Klimstra D, Longnecker D. Recommendations for the reporting of pancreatic specimens containing malignant tumors. The Association of Directors of Anatomic and Surgical Pathology. Am J Clin Pathol. 1999;111:304–7.

    CAS  PubMed  Google Scholar 

  9. Bild AH, Yao G, Chang JT, et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature. 2006;439(7074):353–7.

    Article  CAS  PubMed  Google Scholar 

  10. Potti A, Mukherjee S, Petersen R, et al. A genomic strategy to refine prognosis in early-stage non-small-cell lung cancer. N Engl J Med. 2006;355:570–80.

    Article  CAS  PubMed  Google Scholar 

  11. Copois V, Bibeau F, Bascoul-Mollevi C, et al. Impact of RNA degradation on gene expression profiles: assessment of different methods to reliably determine RNA quality. J Biotechnol. 2007;127:549–59.

    Article  CAS  PubMed  Google Scholar 

  12. Strand C, Enell J, Hedenfalk I, Fernö M. RNA quality in frozen breast cancer samples and the influence on gene expression analysis—a comparison of three evaluation methods using microcapillary electrophoresis traces. BMC Mol Biol. 2007;8:38.

    Article  PubMed  Google Scholar 

  13. Weis S, Llenos IC, Dulay JR, et al. Quality control for microarray analysis of human brain samples: The impact of postmortem factors, RNA characteristics, and histopathology. J Neurosci Methods. 2007;165:198–209.

    Article  CAS  PubMed  Google Scholar 

  14. Jewell SD, Srinivasan M, McCart LM, et al. Analysis of the molecular quality of human tissues: an experience from the Cooperative Human Tissue Network. Am J Clin Pathol. 2002;118:733–41.

    Article  CAS  PubMed  Google Scholar 

  15. Dash A, Maine IP, Varambally S, et al. Changes in differential gene expression because of warm ischemia time of radical prostatectomy specimens. Am J Pathol. 2002;161:1743–8.

    CAS  PubMed  Google Scholar 

  16. Spruessel A, Steimann G, Jung M, et al. Tissue ischemia time affects gene and protein expression patterns within minutes following surgical tumor excision. Biotechniques. 2004;36:1030–7.

    CAS  PubMed  Google Scholar 

  17. Lin DW, Coleman IM, Hawley S, et al. Influence of surgical manipulation on prostate gene expression: implications for molecular correlates of treatment effects and disease prognosis. J Clin Oncol. 2006;24:3763–70.

    Article  CAS  PubMed  Google Scholar 

  18. Ohashi Y, Creek KE, Pirisi L, Kalus R, Young SR. RNA degradation in human breast tissue after surgical removal: a time-course study. Exp Mol Pathol. 2004;77:98–103.

    Article  CAS  PubMed  Google Scholar 

  19. Barnes RO, Parisien M, Murphy LC, Watson PH. Influence of evolution in tumor biobanking on the interpretation of translational research. Cancer Epidemiol Biomarkers Prev. 2008;17:3344–50.

    Article  CAS  PubMed  Google Scholar 

  20. Schlomm T, Näkel E, Lübke A, et al. Marked gene transcript level alterations occur early during radical prostatectomy. Eur Urol. 2008;53:333–44.

    Article  CAS  PubMed  Google Scholar 

  21. Iacobuzio-Donahue CA, Maitra A, Shen-Ong GL, et al. Discovery of novel tumor markers of pancreatic cancer using global gene expression technology. Am J Pathol. 2002;160:1239–49.

    CAS  PubMed  Google Scholar 

  22. Sato N, Fukushima N, Maitra A, et al. Gene expression profiling identifies genes associated with invasive intraductal papillary mucinous neoplasms of the pancreas. Am J Pathol. 2004;164:903–14.

    CAS  PubMed  Google Scholar 

  23. Buchholz M, Braun M, Heidenblut A, et al. Transcriptome analysis of microdissected pancreatic intraepithelial neoplastic lesions. Oncogene. 2005;24:6626–36.

    Article  CAS  PubMed  Google Scholar 

  24. Prasad NB, Biankin AV, Fukushima N, et al. Gene expression profiles in pancreatic intraepithelial neoplasia reflect the effects of Hedgehog signaling on pancreatic ductal epithelial cells. Cancer Res. 2005;65:1619–26.

    Article  CAS  PubMed  Google Scholar 

  25. Imbeaud S, Graudens E, Boulanger V, et al. (2005) Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Res. 33:56.

    Article  PubMed  Google Scholar 

  26. Schroeder A, Mueller O, Stocker S, et al. (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol. 7:3.

    Article  PubMed  Google Scholar 

  27. Micke P, Ohshima M, Tahmasebpoor S, et al. Biobanking of fresh frozen tissue: RNA is stable in nonfixed surgical specimens. Lab Invest. 2006;86:202–11.

    Article  CAS  PubMed  Google Scholar 

  28. Fleige S, Pfaffl MW. RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med. 2006;27:126–39.

    Article  CAS  PubMed  Google Scholar 

  29. Blansfield JA, Caragacianu D, Alexander HR 3rd, et al. Combining agents that target the tumor microenvironment improves the efficacy of anticancer therapy. Clin Cancer Res. 2008;14:270–80.

    Article  CAS  PubMed  Google Scholar 

  30. Lee J, Hever A, Willhite D, Zlotnik A, Hevezi P. Effects of RNA degradation on gene expression analysis of human postmortem tissues. FASEB J. 2005;19:1356–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Allen MD.

Additional information

The first two authors contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudloff, U., Bhanot, U., Gerald, W. et al. Biobanking of Human Pancreas Cancer Tissue: Impact of Ex-Vivo Procurement Times on RNA Quality. Ann Surg Oncol 17, 2229–2236 (2010). https://doi.org/10.1245/s10434-010-0959-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-010-0959-6

Keywords

Navigation