Skip to main content

Advertisement

Log in

Synergistic Effects of Polymorphisms in DNA Repair Genes and Endogenous Estrogen Exposure on Female Breast Cancer Risk

  • Breast Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Endogenous estrogen is suggested to initiate cell proliferation and cause oxidative DNA damage during breast tumorigenesis. Cells eliminate DNA damage by means of repair enzymes. Genotypic variants of DNA damage repair genes, participating in base excision repair (BER) and nucleotide excision repair (NER) pathways, may act as modifiers that affect the association between estrogen exposure and breast cancer.

Methods

In a hospital-based case–control study of female breast cancer, DNA samples were obtained from 401 cases and 533 enrolled healthy controls, all of whom were Chinese women in Taiwan. Genotyping of polymorphisms of XRCC1 (Arg194Trp and Arg399Gln), OGG1 (Ser326Cys and Arg229Gln), ERCC2 Lys751Gln, ERCC4 Ser662Pro, and ERCC5 His1104Asp was performed and used to evaluate breast cancer susceptibility.

Results

Of the nonsynonymous polymorphisms, the ERCC5 1104Asp variant was significantly associated with breast cancer (odds ratio = 1.42; 95% confidence interval = 1.08–1.97), and this association was more pronounced in women with lengthy estrogen exposure. A trend toward an increased risk of developing breast cancer was observed in women who carried greater numbers of combined high-risk genotypes of BER and NER genes (P trend = .038). The synergistic effect of multiple genes on the increase of risk was significant in women with a longer period of estrogen exposure (>26 years), greater age at first full-term pregnancy (>26 years), a longer menarche-to-first full-term pregnancy interval (>11 years), and higher body mass index (>22) (all P < .05).

Conclusions

This study demonstrates that genotype polymorphisms related to DNA damage repair confer greater susceptibility to endogenous estrogen in the development of breast cancer in women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yager JD, Liehr JG. Molecular mechanisms of estrogen carcinogenesis. Annu Rev Pharmacol Toxicol. 1996;36:203–32.

    Article  CAS  PubMed  Google Scholar 

  2. Yang PS, Yang TL, Liu CL, Wu CW, Shen CY. A case-control study of breast cancer in Taiwan—a low-incidence area. Br J Cancer. 1997;75:752–6.

    CAS  PubMed  Google Scholar 

  3. Adly L, Hill D, Sherman ME, et al. Serum concentrations of estrogens, sex hormone-binding globulin, and androgens and risk of breast cancer in postmenopausal women. Int J Cancer. 2006;119:2402–7.

    Article  CAS  PubMed  Google Scholar 

  4. Yu H, Shu XO, Shi R, et al. Plasma sex steroid hormones and breast cancer risk in Chinese women. Int J Cancer. 2003;105:92–7.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang F, Swanson SM, van Breemen RB, et al. Equine estrogen metabolite 4-hydroxyequilenin induces DNA damage in the rat mammary tissues: formation of single-strand breaks, apurinic sites, stable adducts, and oxidized bases. Chem Res Toxicol. 2001;14:1654–9.

    Article  CAS  PubMed  Google Scholar 

  6. Liehr JG. Genotoxicity of the steroidal oestrogens oestrone and oestradiol: possible mechanism of uterine and mammary cancer development. Hum Reprod Update. 2001;7:273–81.

    Article  CAS  PubMed  Google Scholar 

  7. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  8. Bolton JL, Thatcher GR. Potential mechanisms of estrogen quinone carcinogenesis. Chem Res Toxicol. 2008;21:93–101.

    Article  PubMed  Google Scholar 

  9. Rajapakse N, Butterworth M, Kortenkamp A. Detection of DNA strand breaks and oxidized DNA bases at the single-cell level resulting from exposure to estradiol and hydroxylated metabolites. Environ Mol Mutagen. 2005;45:397–404.

    Article  CAS  PubMed  Google Scholar 

  10. Muzandu K, Shaban Z, Ishizuka M, Kazusaka A, Fujita S. Nitric oxide enhances catechol estrogen-induced oxidative stress in LNCaP cells. Free Radic Res. 2005;39:389–98.

    Article  CAS  PubMed  Google Scholar 

  11. Charames GS, Bapat B. Genomic instability and cancer. Curr Mol Med. 2003;3:589–96.

    Article  CAS  PubMed  Google Scholar 

  12. Kim IJ, Ku JL, Kang HC, et al. Mutational analysis of OGG1, MYH, MTH1 in FAP, HNPCC and sporadic colorectal cancer patients: R154H OGG1 polymorphism is associated with sporadic colorectal cancer patients. Hum Genet. 2004;115:498–503.

    Article  CAS  PubMed  Google Scholar 

  13. Cheng CW, Yu JC, Huang CS, et al. Polymorphism of cytosolic serine hydroxymethyltransferase, estrogen and breast cancer risk among Chinese women in Taiwan. Breast Cancer Res Treat. 2008;111:145–55.

    Article  CAS  PubMed  Google Scholar 

  14. Huang CS, Chern HD, Chang KJ, et al. Breast cancer risk associated with genotype polymorphism of the estrogen-metabolizing genes CYP17, CYP1A1, and COMT: a multigenic study on cancer susceptibility. Cancer Res. 1999;59:4870–5.

    CAS  PubMed  Google Scholar 

  15. Lou MA, Tseng SL, Chang SF, et al. Novel patterns of p53 abnormality in breast cancer from Taiwan: experience from a low-incidence area. Br J Cancer. 1997;75:746–51.

    CAS  PubMed  Google Scholar 

  16. Yang HC, Lin CH, Hung SI, Fann CS. A comparison of individual genotyping and pooled DNA analysis for polymorphism validation prior to large-scale genetic studies. Ann Hum Genet. 2006;70:350–9.

    Article  CAS  PubMed  Google Scholar 

  17. Cheng TC, Chen ST, Huang CS, et al. Breast cancer risk associated with genotype polymorphism of the catechol estrogen-metabolizing genes: a multigenic study on cancer susceptibility. Int J Cancer. 2005;113:345–53.

    Article  CAS  PubMed  Google Scholar 

  18. Lo YL, Yu JC, Chen ST, et al. Breast cancer risk associated with genotypic polymorphism of the mitotic checkpoint genes: a multigenic study on cancer susceptibility. Carcinogenesis. 2007;28:1079–86.

    Article  CAS  PubMed  Google Scholar 

  19. Fu YP, Yu JC, Cheng TC, et al. Breast cancer risk associated with genotypic polymorphism of the nonhomologous end-joining genes: a multigenic study on cancer susceptibility. Cancer Res. 2003;63:2440–6.

    CAS  PubMed  Google Scholar 

  20. Botto LD, Khoury MJ. Commentary: facing the challenge of gene-environment interaction: the two-by-four table and beyond. Am J Epidemiol. 2001;153:1016–20.

    Article  CAS  PubMed  Google Scholar 

  21. Russo J, Tay LK, Russo IH. Differentiation of the mammary gland and susceptibility to carcinogenesis. Breast Cancer Res Treat. 1982;2:5–73.

    Article  CAS  PubMed  Google Scholar 

  22. Habib SL, Danial E, Nath S, et al. Genetic polymorphisms in OGG1 and their association with angiomyolipoma, a benign kidney tumor in patients with tuberous sclerosis. Cancer Biol Ther. 2008;7:23–7.

    Article  CAS  PubMed  Google Scholar 

  23. Jeon HS, Kim KM, Park SH, et al. Relationship between XPG codon 1104 polymorphism and risk of primary lung cancer. Carcinogenesis. 2003;24:1677–81.

    Article  CAS  PubMed  Google Scholar 

  24. Le Marchand L, Donlon T, Lum-Jones A, Seifried A, Wilkens LR. Association of the hOGG1 Ser326Cys polymorphism with lung cancer risk. Cancer Epidemiol Biomarkers Prev. 2002;11:409–12.

    CAS  PubMed  Google Scholar 

  25. Lunn RM, Helzlsouer KJ, Parshad R, et al. XPD polymorphisms: effects on DNA repair proficiency. Carcinogenesis. 2000;21:551–5.

    Article  CAS  PubMed  Google Scholar 

  26. Rossner P Jr, Terry MB, Gammon MD, et al. OGG1 polymorphisms and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2006;15:811–5.

    Article  CAS  PubMed  Google Scholar 

  27. Shen M, Berndt SI, Rothman N, et al. Polymorphisms in the DNA nucleotide excision repair genes and lung cancer risk in Xuan Wei, China. Int J Cancer. 2005;116:768–73.

    Article  CAS  PubMed  Google Scholar 

  28. Smith TR, Levine EA, Freimanis RI, et al. Polygenic model of DNA repair genetic polymorphisms in human breast cancer risk. Carcinogenesis. 2008;29:2132–8.

    Article  CAS  PubMed  Google Scholar 

  29. Hu Z, Ma H, Chen F, Wei Q, Shen H. XRCC1 polymorphisms and cancer risk: a meta-analysis of 38 case-control studies. Cancer Epidemiol Biomarkers Prev. 2005;14:1810–8.

    Article  CAS  PubMed  Google Scholar 

  30. Ananth CV, Kleinbaum DG. Regression models for ordinal responses: a review of methods and applications. Int J Epidemiol. 1997;26:1323–33.

    Article  CAS  PubMed  Google Scholar 

  31. Peterson HB, Kleinbaum DG. Interpreting the literature in obstetrics and gynecology: II. Logistic regression and related issues. Obstet Gynecol. 1991;78:717–20.

    CAS  PubMed  Google Scholar 

  32. Chiang FY, Wu CW, Hsiao PJ, et al. Association between polymorphisms in DNA base excision repair genes XRCC1, APE1, and ADPRT and differentiated thyroid carcinoma. Clin Cancer Res. 2008;14:5919–24.

    Article  CAS  PubMed  Google Scholar 

  33. Hsieh LL, Chien HT, Chen IH, et al. The XRCC1 399Gln polymorphism and the frequency of p53 mutations in Taiwanese oral squamous cell carcinomas. Cancer Epidemiol Biomarkers Prev. 2003;12:439–43.

    CAS  PubMed  Google Scholar 

  34. Saadat M, Ansari-Lari M. Polymorphism of XRCC1 (at codon 399) and susceptibility to breast cancer, a meta-analysis of the literatures. Breast Cancer Res Treat. 2009;115:137–44.

    Article  CAS  PubMed  Google Scholar 

  35. Ali MF, Meza JL, Rogan EG, Chakravarti D. Prevalence of BER gene polymorphisms in sporadic breast cancer. Oncol Rep. 2008;19:1033–8.

    CAS  PubMed  Google Scholar 

  36. Costa S, Pinto D, Pereira D, et al. DNA repair polymorphisms might contribute differentially on familial and sporadic breast cancer susceptibility: a study on a Portuguese population. Breast Cancer Res Treat. 2007;103:209–17.

    Article  CAS  PubMed  Google Scholar 

  37. Deligezer U, Dalay N. Association of the XRCC1 gene polymorphisms with cancer risk in Turkish breast cancer patients. Exp Mol Med. 2004;36:572–5.

    CAS  PubMed  Google Scholar 

  38. Shen J, Gammon MD, Terry MB, et al. Polymorphisms in XRCC1 modify the association between polycyclic aromatic hydrocarbon-DNA adducts, cigarette smoking, dietary antioxidants, and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2005;14:336–42.

    Article  CAS  PubMed  Google Scholar 

  39. Sangrajrang S, Schmezer P, Burkholder I, et al. Polymorphisms in three base excision repair genes and breast cancer risk in Thai women. Breast Cancer Res Treat. 2008;111:279–88.

    Article  CAS  PubMed  Google Scholar 

  40. Pachkowski BF, Winkel S, Kubota Y, et al. XRCC1 genotype and breast cancer: functional studies and epidemiologic data show interactions between XRCC1 codon 280 His and smoking. Cancer Res. 2006;66:2860–8.

    Article  CAS  PubMed  Google Scholar 

  41. Luna L, Rolseth V, Hildrestrand GA, et al. Dynamic relocalization of hOGG1 during the cell cycle is disrupted in cells harbouring the hOGG1-Cys326 polymorphic variant. Nucleic Acids Res. 2005;33:1813–24.

    Article  CAS  PubMed  Google Scholar 

  42. Cai Q, Shu XO, Wen W, et al. Functional Ser326Cys polymorphism in the hOGG1 gene is not associated with breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2006;15:403–4.

    Article  CAS  PubMed  Google Scholar 

  43. Vogel U, Nexo BA, Olsen A, et al. No association between OGG1 Ser326Cys polymorphism and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2003;12:170–1.

    CAS  PubMed  Google Scholar 

  44. Zhang Y, Newcomb PA, Egan KM, et al. Genetic polymorphisms in base-excision repair pathway genes and risk of breast cancer. Cancer Epidemiol Biomarkers Prev. 2006;15:353–8.

    Article  CAS  PubMed  Google Scholar 

  45. Xu J, Zheng SL, Turner A, et al. Associations between hOGG1 sequence variants and prostate cancer susceptibility. Cancer Res. 2002;62:2253–7.

    CAS  PubMed  Google Scholar 

  46. Chang JS, Wrensch MR, Hansen HM, et al. Nucleotide excision repair genes and risk of lung cancer among San Francisco Bay Area Latinos and African Americans. Int J Cancer. 2008;123:2095–104.

    Article  CAS  PubMed  Google Scholar 

  47. Kumar R, Hoglund L, Zhao C, et al. Single nucleotide polymorphisms in the XPG gene: determination of role in DNA repair and breast cancer risk. Int J Cancer. 2003;103:671–5.

    Article  CAS  PubMed  Google Scholar 

  48. Pisha E, Lui X, Constantinou AI, Bolton JL. Evidence that a metabolite of equine estrogens, 4-hydroxyequilenin, induces cellular transformation in vitro. Chem Res Toxicol. 2001;14:82–90.

    Article  CAS  PubMed  Google Scholar 

  49. Matsui A, Ikeda T, Enomoto K, et al. Increased formation of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, in human breast cancer tissue and its relationship to GSTP1 and COMT genotypes. Cancer Lett. 2000;151:87–95.

    Article  CAS  PubMed  Google Scholar 

  50. Cavalieri E, Frenkel K, Liehr JG, Rogan E, Roy D. Estrogens as endogenous genotoxic agents—DNA adducts and mutations. J Natl Cancer Inst Monogr. 2000;2000:75–93.

    Google Scholar 

  51. Choi JY, Hamajima N, Tajima K, et al. hOGG1 Ser326Cys polymorphism and breast cancer risk among Asian women. Breast Cancer Res Treat. 2003;79:59–62.

    Article  CAS  PubMed  Google Scholar 

  52. Jorgensen TJ, Visvanathan K, Ruczinski I, et al. Breast cancer risk is not associated with polymorphic forms of xeroderma pigmentosum genes in a cohort of women from Washington County, Maryland. Breast Cancer Res Treat. 2007;101:65–71.

    Article  CAS  PubMed  Google Scholar 

  53. Crew KD, Gammon MD, Terry MB, et al. Polymorphisms in nucleotide excision repair genes, polycyclic aromatic hydrocarbon–DNA adducts, and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2007;16:2033–41.

    Article  CAS  PubMed  Google Scholar 

  54. Bau DT, Fu YP, Chen ST, et al. Breast cancer risk and the DNA double-strand break end-joining capacity of nonhomologous end-joining genes are affected by BRCA1. Cancer Res. 2004;64:5013–9.

    Article  CAS  PubMed  Google Scholar 

  55. Tsai PS, Nielen M, van der Horst GT, et al. The effect of DNA repair defects on reproductive performance in nucleotide excision repair (NER) mouse models: an epidemiological approach. Transgenic Res. 2005;14:845–57.

    Article  CAS  PubMed  Google Scholar 

  56. Weiss JM, Weiss NS, Ulrich CM, et al. Interindividual variation in nucleotide excision repair genes and risk of endometrial cancer. Cancer Epidemiol Biomarkers Prev. 2005;14:2524–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Show-Lin Yang and Yi-Chien Mau for their help with the organization of our study. This project was supported by a research grant from the Chung Shan Medical University and Hospital and Yuanli Lee’s General Hospital (CSMU-LMC-097-003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen-Yang Shen PhD or Chun-Wen Cheng PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, MS., Yu, JC., Wang, HW. et al. Synergistic Effects of Polymorphisms in DNA Repair Genes and Endogenous Estrogen Exposure on Female Breast Cancer Risk. Ann Surg Oncol 17, 760–771 (2010). https://doi.org/10.1245/s10434-009-0802-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-009-0802-0

Keywords

Navigation