Skip to main content

Advertisement

Log in

Origin of Cancer Stem Cells: The Role of Self-Renewal and Differentiation

  • Melanomas
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Self-renewal and differentiation potential is the feature of stem cells. Differentiation is usually considered to be a one-way process of specialization as cells develop the functions of their ultimate fate and lose their immature characteristics, such as self-renewal. Progenitor cells, the products of stem cells losing the activity of self-renewal, could differentiate to mature cells, which have the feature of differentiation and lose the activity of self-renewal.The roles for cancer stem cells have been demonstrated for some cancers. However, the origin of the cancer stem cells remains elusive.

Methods

This review focuses on current scientific controversies related to the establishment of the cancer stem cells — in particular, how self-renewal and differentiation block might contribute to the evolution of cancer.

Results

Cancer stem cells may be caused by transforming mutations occurring in multi-potential stem cells, tissue-specific stem cells, progenitor cells, mature cells and cancer cells. Progenitor cells obtain the self-renewal activity by activating the self-renewal-associated genes rather than dedifferentiate to tissue special stem cells. The transform multi-potential stem cells gain the differentiation feature of special tissue by differentiating to cancer cells. Mature cells and cancer cells may dedifferentiate or reprogram to cancer stem cells by genetic and / or epigenetic events to gain the self-renewal activity and lose some features of differentiation. The cancer-derived stem cells are not the “cause”, but the “consequence” of carcinogenesis. The genetic program controlling self-renewal and differentiation is a key unresolved issue.

Conclusion

Cancer stem cells may be caused by disturbance of self-renewal and differentiation occurring in multi-potential stem cells, tissue-specific stem cells, progenitor cells, mature cells and cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001;414:105–11

    PubMed  CAS  Google Scholar 

  2. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 2003;3:895–902

    PubMed  CAS  Google Scholar 

  3. Al Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003;100:3983–8

    PubMed  CAS  Google Scholar 

  4. Matsui WH, Huff CA, Wang Q, et al. Characterization of clonogenic multiple myeloma cells. Blood 2004;103:2332–6

    PubMed  CAS  Google Scholar 

  5. Fomchenko EI, Holland EC. Stem cells and brain cancer. Exp Cell Res 2005;306:323–9

    PubMed  CAS  Google Scholar 

  6. Brown MD, Gilmore PE, Hart CA, et al. Characterization of benign and malignant prostate epithelial Hoechst 33342 side populations. Prostate 2007;67:1384–96

    PubMed  Google Scholar 

  7. Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res 2007;67:1030–7

    PubMed  CAS  Google Scholar 

  8. Ma S, Chan KW, Hu L, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 2007;132:2542–56

    PubMed  CAS  Google Scholar 

  9. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001;414:105–11

    PubMed  CAS  Google Scholar 

  10. Reguart N, He B, Taron M, You L, Jablons DM, Rosell R. The role of Wnt signaling in cancer and stem cells. Future Oncol 2005;1:787–97

    PubMed  CAS  Google Scholar 

  11. Taipale J, Beachy PA. The Hedgehog and Wnt signaling pathways in cancer. Nature 2001;411:349–54

    PubMed  CAS  Google Scholar 

  12. Chiba S. Notch signaling in stem cell systems. Stem Cells 2006;24:2437–47

    PubMed  CAS  Google Scholar 

  13. Crowe DL, Parsa B, Sinha UK. Relationships between stem cells and cancer stem cells. Histol Histopathol 2004;19:505–9

    PubMed  CAS  Google Scholar 

  14. Katoh M, Katoh M. WNT signaling pathway and stem cell signaling network. Clin Cancer Res 2007;13:4042–5

    PubMed  CAS  Google Scholar 

  15. Zhu AJ, Watt FM. Beta-catenin signalling modulates proliferative potential of human epidermal keratinocytes independently of intercellular adhesion. Development 1999;126:2285–98

    PubMed  CAS  Google Scholar 

  16. Shachaf CM, Kopelman AM, Arvanitis C, et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 2004;431:1112–7

    PubMed  CAS  Google Scholar 

  17. Gat U, DasGupta R, Degenstein L, Fuchs E. De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated-catenin in skin. Cell 1998;95:605–14

    PubMed  CAS  Google Scholar 

  18. Yilmaz OH, Valdez R, Theisen BK, et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006;441:475–82

    PubMed  CAS  Google Scholar 

  19. Martinez-Climent JA, Andreu EJ, Prosper F. Somatic stem cells and the origin of cancer. Clin Transl Oncol 2006;8:647–63

    PubMed  CAS  Google Scholar 

  20. Pathak S. Organ- and tissue-specific stem cells and carcinogenesis. Anticancer Res 2002;22:1353–6

    PubMed  Google Scholar 

  21. Wu XZ, Chen D. Origin of hepatocellular carcinoma: role of stem cells. J Gastroenterol Hepatol 2006;21:1093–8

    PubMed  CAS  Google Scholar 

  22. Durnez A, Verslype C, Nevens F, et al. The clinicopathological and prognostic relevance of cytokeratin 7 and 19 expression in hepatocellular carcinoma. A possible progenitor cell origin. Histopathology 2006;49:138–51

    PubMed  CAS  Google Scholar 

  23. Libbrecht L, De Vos R, Cassiman D, Desmet V, Aerts R, Roskams T. Hepatic progenitor cells in hepatocellular adenomas. Am J Surg Pathol 2001;25:1388–96

    PubMed  CAS  Google Scholar 

  24. Robrechts C, De Vos R, Van den Heuvel M, et al. Primary liver tumour of intermediate (hepatocyte–bile duct cell) phenotype: a progenitor cell tumour. Liver 1998;18:288–93

    PubMed  CAS  Google Scholar 

  25. Kim H, Park C, Han KH, et al. Primary liver carcinoma of intermediate (hepatocyte-cholangiocyte) phenotype. J Hepatol 2004;40:298–304

    PubMed  CAS  Google Scholar 

  26. Tanaka K, Honna T, Kitano Y, et al. Combined fibrolamellar carcinoma and cholangiocarcinoma exhibiting biphenotypic antigen expression: a case report. J Clin Pathol 2005;58:884–7

    PubMed  CAS  Google Scholar 

  27. Morita D, Kagata Y, Ogata S, et al. Combined hepatocellular carcinoma and cholangiocarcinoma with components of mucinous carcinoma arising in a cirrhotic liver. Pathol Int 2006;56:222–6

    PubMed  Google Scholar 

  28. Phongkitkarun S, Srisuwan T, Sornmayura P, Jatchavala J. Combined hepatocellular and cholangiocarcinoma: CT findings with emphasis on multiphasic helical CT. J Med Assoc Thai 2007;90:113–20

    PubMed  Google Scholar 

  29. Theise ND, Yao JL, Harada K, et al. Hepatic “stem cell” malignancies in adults: four cases. Histopathology 2003;43:263–71

    PubMed  CAS  Google Scholar 

  30. Jabbour MN, Matioli GT. Age dependent and cellular origin (stem versus progenitor) of a selected group of spontaneous brain tumors in humans. Med Hypotheses 2006;67:1437–42

    PubMed  CAS  Google Scholar 

  31. Jamieson CH, Ailles LE, Dylla SJ, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004;351:657–67

    PubMed  CAS  Google Scholar 

  32. Cozzio A, Passegué E, Ayton PM, Karsunky H, Cleary ML, Weissman IL. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 2003;17:3029–35

    PubMed  CAS  Google Scholar 

  33. Huntly BJ, Shigematsu H, Deguchi K, et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 2004;6:587–96

    PubMed  CAS  Google Scholar 

  34. Jamieson CH, Weissman IL, Passegué E. Chronic versus acute myelogenous leukemia: a question of self-renewal. Cancer Cell 2004;6:531–3

    PubMed  CAS  Google Scholar 

  35. Krivtsov AV, Twomey D, Feng Z, et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 2006;442:818–22

    PubMed  CAS  Google Scholar 

  36. Neil DT, Sunil B, Romil S, et al. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology 2000;31:235–40

    Google Scholar 

  37. Oh SH, Muzzonigro TM, Bae SH, LaPlante JM, Hatch HM, Petersen BE. Adult bone marrow–derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab Invest 2004;84:607–7

    PubMed  CAS  Google Scholar 

  38. Borue X, Lee S, Grove J, et al. Bone marrow derived cells contribute to epithelial engraftment during wound healing. Am J Pathol 2004:165:1767–72

    PubMed  Google Scholar 

  39. Palermo AT, Labarge MA, Doyonnas R, Pomerantz J, Blau HM. Bone marrow contribution to skeletal muscle: a physiological response to stress. Dev Biol 2005;279:336–44

    PubMed  CAS  Google Scholar 

  40. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult bone marrow. Nature 2002;418:41–9

    PubMed  CAS  Google Scholar 

  41. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et a1. Bone marrow cells regenerate infarcted myocardium?. Nature 2001;410:701–5

    Google Scholar 

  42. Reyes M, Verfailie CM. Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann N Y Acad Sci 2001;938:231–5

    Article  PubMed  CAS  Google Scholar 

  43. Deng W, Obrocka M, Fischer I, Prockop DJ. In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochim Biophys Res Commun 2001;282:148–52

    CAS  Google Scholar 

  44. Wu XZ, Zhao LS, Xu Q, Zhang Y, Tang H. Differentiation of bone marrow mesenchymal stem cells into hepatocytes in hepatectomized mouse. J Biomed Eng 2005;22:1234–7

    CAS  Google Scholar 

  45. Aractingi S, Kanitakis J, Euvrard S, et al. Skin carcinoma arising from donor cells in a kidney transplant recipient. Cancer Res 2005;65:1755–60

    PubMed  CAS  Google Scholar 

  46. Barozzi P, Luppi M, Facchetti F, et al. Post-transplant Kaposi sarcoma originates from the seeding of donor-derived progenitors. Nat Med 2003;9:554–61

    PubMed  CAS  Google Scholar 

  47. Rubio D, Garcia-Castro J, Martín MC, et al. Spontaneous human adult stem cell transformation. Cancer Res 2005;65:3035–9

    PubMed  CAS  Google Scholar 

  48. Burns JS, Abdallah BM, Guldberg P, Rygaard J, Schrøder HD, Kassem M. Tumorigenic heterogeneity in cancer stem cells evolved from long-term cultures of telomerase-immortalized human mesenchymal stem cells. Cancer Res 2005;65:3126–35

    PubMed  CAS  Google Scholar 

  49. Serakinci N, Guldberg P, Burns JS, et al. Adult human mesenchymal stem cell as a target for neoplastic transformation. Oncogene 2004;23:5095–8

    PubMed  CAS  Google Scholar 

  50. Liu C, Chen Z, Chen Z, Zhang T, Lu Y. Multiple tumor types may originate from bone marrow–derived cells. Neoplasia 2006;8:716–24

    PubMed  CAS  Google Scholar 

  51. Houghton J, Stoicov C, Nomura S, et al. Gastric cancer originating from bone marrow–derived cells. Science 2004;306:1568–71

    PubMed  CAS  Google Scholar 

  52. Wu XZ, Yu XH. Bone marrow stem cells: the source of hepatocellular carcinoma? Med Hypotheses 2007;69:36–42

    PubMed  CAS  Google Scholar 

  53. Li HC, Stoicov C, Rogers AB, Houghton JM. Stem cells and cancer: evidence for bone marrow stem cells in epithelial cancers. World J Gastroenterol 2006;12:363–71

    PubMed  Google Scholar 

  54. Dittmar T, Seidel J, Zaenker KS, Niggemann B. Carcinogenesis driven by bone marrow–derived stem cells. Contrib Microbiol 2006;13:156–69

    Article  PubMed  Google Scholar 

  55. Bjerkvig R, Tysnes BB, Aboody KS, Najbauer J, Terzis AJ. Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer 2005;5:899–904

    PubMed  CAS  Google Scholar 

  56. Rizvi AZ, Swain JR, Davies PS, et al. Bone marrow–derived cells fuse with normal and transformed intestinal stem cells. Proc Natl Acad Sci U S A 2006;103:6321–5

    PubMed  CAS  Google Scholar 

  57. Vassilopoulos G, Wang PR, Russell DW. Transplanted bone marrow regenerates liver by cell fusion. Nature 2003;422:901–4

    PubMed  CAS  Google Scholar 

  58. Wang X, Willenbring H, Akkari Y, et al. Cell fusion is the principal source of bone-marrow–derived hepatocytes. Nature 2003;422:897–901

    PubMed  CAS  Google Scholar 

  59. Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow–derived myogenic progenitors. Science 1998;279:1528–30

    PubMed  CAS  Google Scholar 

  60. Ianus A, Holz GG, Theise ND, Hussain MA. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 2003;111:843–50

    PubMed  CAS  Google Scholar 

  61. Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM. Origin of endothelial progenitors in human postnatal bone marrow? J Clin Invest 2002;109:337–46

    PubMed  CAS  Google Scholar 

  62. Petersen BE, Bowen WC, Patrene KD, et al. Bone marrow as a potential source of hepatic oval cells. Science 1999;284:1168–70

    PubMed  CAS  Google Scholar 

  63. Sell S. Cellular origin of cancer: dedifferentiation or stem cell maturation arrest? Environ Health Perspect 1993;101:S15–26

    Google Scholar 

  64. Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell–like state. Nature 2007;448:318–24

    PubMed  CAS  Google Scholar 

  65. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663–76

    PubMed  CAS  Google Scholar 

  66. Niwa H, Miyazaki J. Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 2000;24:372–6

    PubMed  CAS  Google Scholar 

  67. Hochedlinger K, Jaenisch R. Nuclear reprogramming and pluripotency. Nature 2006;441:1061–7

    PubMed  CAS  Google Scholar 

  68. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature 2007;448:313–7

    PubMed  CAS  Google Scholar 

  69. Taranger CK, Noer A, Sorensen AL, Hakelien AM, Boquest AC, Collas P. Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell 2005;16:5719–35

    PubMed  CAS  Google Scholar 

  70. Gordon GJ, Butz GM, Grisham JW, Coleman WB. Isolation, short-term culture, and transplantation of small hepatocyte-like progenitor cells from retrorsine-exposed rats. Transplantation 2002;73:1236–43

    PubMed  Google Scholar 

  71. Gordon GJ, Coleman WB, Grisham JW. Temporal analysis of hepatocyte differentiation by small hepatocyte-like progenitor cells during liver regeneration in retrorsine-exposed rats. Am J Pathol 2000;157:771–86

    PubMed  CAS  Google Scholar 

  72. Gordon GJ, Coleman WB, Hixson DC, Grisham JW. Liver regeneration in rats with retrorsine-induced hepatocellular injury proceeds through a novel cellular response. Am J Pathol 2000;156:607–19

    PubMed  CAS  Google Scholar 

  73. Xiao JC, Ruck P, Kaiserling E. Small epithelial cells in extrahepatic biliary atresia: electron microscopic and immunoelectron microscopic findings suggest a close relationship to liver progenitor cells. Histopathology 1999;35:454–60

    PubMed  CAS  Google Scholar 

  74. Avril A, Pichard V, Bralet MP, Ferry N. Mature hepatocytes are the source of small hepatocyte-like progenitor cells in the retrorsine model of liver injury. J Hepatol 2004;41:737–43

    PubMed  CAS  Google Scholar 

  75. Kim BH, Sung SR, Choi EH, et al. Dedifferentiation of conditionally immortalized hepatocytes with long-term in vitro passage. Exp Mol Med 2000;32:29–37

    PubMed  Google Scholar 

  76. Arterburn LM, Zurlo J, Yager JD, Overton RM, Heifetz AH. A morphological study of differentiated hepatocytes in vitro. Hepatology 1995;22:175–87

    PubMed  CAS  Google Scholar 

  77. Elaut G, Henkens T, Papeleu P, et al. Molecular mechanisms underlying the dedifferentiation process of isolated hepatocytes and their cultures. Curr Drug Metab 2006;7:629–60

    PubMed  CAS  Google Scholar 

  78. Dabeva MD, Laconi E, Oren R, Petkov PM, Hurston E, Shafritz DA. Liver regeneration and alpha-fetoprotein messenger RNA expression in the retrorsine model for hepatocyte transplantation. Cancer Res 1998;58:5825–34

    PubMed  CAS  Google Scholar 

  79. Fausto N, Campbell JS. The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech Dev 2003;120:117–30

    PubMed  CAS  Google Scholar 

  80. Grompe M, Finegold MJ. Liver stem cells. In: Marshak DR, Gardner RL, Gottlieb D, (eds.) Stem Cell Biology. Cold Spring Harbor NY: Cold Spring Harbor Laboratory Press, 2001:455–97

    Google Scholar 

  81. Bachoo RM, Maher EA, Ligon KL, et al. Epidermal growth factor receptor and Ink4a/Arf. Convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 2002;1:269–77

    PubMed  CAS  Google Scholar 

  82. Uhrbom L, Dai C, Celestino JC, Rosenblum MK, Fuller GN, Holland EC. Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res 2002;62:5551–8

    PubMed  CAS  Google Scholar 

  83. Kirchner T, Muller S, Hattori T, et al. Metaplasia, intraepithelial neoplasia and early cancer of the stomach are related to dedifferentiated epithelial cells defined by cytokeratin-7 expression in gastritis. Virchows Arch 2001;439:512–22

    PubMed  CAS  Google Scholar 

  84. Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2002;2:38–47

    PubMed  CAS  Google Scholar 

  85. Vaupel P. Oxygen transport in tumors: characteristics and clinical implications. Adv Exp Med Biol 1996;388:341–51

    PubMed  CAS  Google Scholar 

  86. Vaupel P, Thews O, Hoeckel M. Treatment resistance of solid tumors: role of hypoxia and anemia. Med Oncol 2001;18:243–59

    PubMed  CAS  Google Scholar 

  87. Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell 2007;129:465–72

    PubMed  CAS  Google Scholar 

  88. Covello KL, Kehler J, Yu H, et al. HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev 2006;20:557–70

    PubMed  CAS  Google Scholar 

  89. Gustafsson MV, Zheng X, Pereira T, et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 2005;9:617–28

    PubMed  CAS  Google Scholar 

  90. Pear WS, Simon MC. Lasting longer without oxygen: the influence of hypoxia on Notch signaling. Cancer Cell 2005;8:435–7

    PubMed  CAS  Google Scholar 

  91. Sainson RC, Harris AL. Hypoxia-regulated differentiation: let’s step it up a notch. Trends Mol Med 2006;12:141–3

    PubMed  CAS  Google Scholar 

  92. Jogi A, Ora I, Nilsson H, et al. Hypoxia alters gene expression in human neuroblastoma cells toward an immature and neural crest-like phenotype. Proc Natl Acad Sci U S A 2002;99:7021–6

    PubMed  CAS  Google Scholar 

  93. Helczynska K, Kronblad A, Jogi A, et al. Hypoxia promotes a dedifferentiated phenotype in ductal breast carcinoma in situ. Cancer Res 2003;63:1441–4

    PubMed  CAS  Google Scholar 

  94. Holmquist L, Löfstedt T, Påhlman S. Effect of hypoxia on the tumor phenotype: the neuroblastoma and breast cancer models. Adv Exp Med Biol 2006;587:179–93

    Article  PubMed  CAS  Google Scholar 

  95. Kang SK, Park JB, Cha SH. Multipotent, dedifferentiated cancer stem-like cells from brain gliomas. Stem Cells Dev 2006;15:423–35

    PubMed  CAS  Google Scholar 

  96. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003;3:721–32

    PubMed  CAS  Google Scholar 

  97. Jogi A, Vallon-Christersson J, Holmquist L, Axelson H, Borg A, Pahlman S. Human neuroblastoma cells exposed to hypoxia: induction of genes associated with growth, survival, and aggressive behavior. Exp Cell Res 2004;295:469–87

    PubMed  CAS  Google Scholar 

  98. Edsjö A, Holmquist L, Påhlman S. Neuroblastoma as an experimental model for neuronal differentiation and hypoxia-induced tumor cell dedifferentiation. Semin Cancer Biol 2007;17:248–56

    PubMed  Google Scholar 

  99. Jogi A, Ora I, Nilsson H, Poellinger L, Axelson H, Pahlman S. Hypoxia-induced dedifferentiation in neuroblastoma cells. Cancer Lett 2003;197:145–50

    PubMed  CAS  Google Scholar 

  100. Axelson H, Fredlund E, Ovenberger M, Landberg G, Pahlman S. Hypoxia-induced dedifferentiation of tumor cells—a mechanism behind heterogeneity and aggressiveness of solid tumors. Semin Cell Dev Biol 2005;16:554–63

    PubMed  CAS  Google Scholar 

  101. Yaccoby S. The phenotypic plasticity of myeloma plasma cells as expressed by dedifferentiation into an immature, resilient, and apoptosis-resistant phenotype. Clin Cancer Res 2005;11:7599–606

    PubMed  CAS  Google Scholar 

  102. Tsai RY. A molecular view of stem cell and cancer cell self-renewal. Int J Biochem Cell Biol 2004;36:684–94

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong-Zhi Wu PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, XZ. Origin of Cancer Stem Cells: The Role of Self-Renewal and Differentiation. Ann Surg Oncol 15, 407–414 (2008). https://doi.org/10.1245/s10434-007-9695-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-007-9695-y

Keywords

Navigation