Skip to main content

Advertisement

Log in

Cortical and Subventricular Zone Glioblastoma-Derived Stem-Like Cells Display Different Molecular Profiles and Differential In Vitro and In Vivo Properties

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Cellular self-renewal capacity in glioblastomas is heterogeneous, with only stem-like cells having this property. These cells generate a specific tumor phenotype, but no link with tumor location or molecular characteristics has ever been made.

Methods

Two cells lines, established from cell-dissociated glioblastomas and A2B5+ magnetic cell sorting, were used to decipher the mechanisms of cell migration in glioblastomas. GBM6 was derived from a glioblastoma close to the subventricular zone, whereas GBM9 was derived from a cortical glioblastoma and contained a high number of CD133+ cells.

Results

Orthotopic injections in both the subventricular zone and the cortex of nude mice showed that GBM6 and GBM9 cells had a differential pattern of migration that mirrored that of adult and fetal normal neural stem cells, respectively. GBM6 demonstrated higher tumorigenicity than GBM9, and whichever cell line was injected, subventricular zone-implanted tumors were larger than cortical ones. In vitro, GBM6 and GBM9 displayed high autorenewal and proliferation rates, and their expression profiles and genomic status showed that they had distinctive molecular signatures: GBM6 was classified as a mesenchymal glioblastoma and GBM9 as a proneural glioblastoma.

Conclusions

Altogether, our findings suggest that tumor location in addition to molecular signature influence tumor growth and migration pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359(5):492–507.

    Article  PubMed  CAS  Google Scholar 

  2. Watanabe K, Tachibana O, Sata K, Yonekawa Y, Kleihues P, Ohgaki H. Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol. 1996;6(3):217–23; discussion 23–4.

    Google Scholar 

  3. Phillips HS, Kharbanda S, Chen R, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9(3):157–73.

    Article  PubMed  CAS  Google Scholar 

  4. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.

    Article  Google Scholar 

  5. Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321(5897):1807–12.

    Article  PubMed  CAS  Google Scholar 

  6. Verhaak RG, Hoadley KA, Purdom E, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110.

    Article  PubMed  CAS  Google Scholar 

  7. Ducray F, de Reynies A, Chinot O, et al. An ANOCEF genomic and transcriptomic microarray study of the response to radiotherapy or to alkylating first-line chemotherapy in glioblastoma patients. Mol Cancer. 2010;9:234 [Epub ahead of print].

    Google Scholar 

  8. Galli R, Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64(19):7011–21.

    Article  PubMed  CAS  Google Scholar 

  9. Zaidi HA, Kosztowski T, DiMeco F, Quinones-Hinojosa A. Origins and clinical implications of the brain tumor stem cell hypothesis. J Neurooncol. 2009;93(1):49–60.

    Article  PubMed  Google Scholar 

  10. Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.

    Article  PubMed  CAS  Google Scholar 

  11. Beier D, Hau P, Proescholdt M, et al. CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res. 2007;67(9):4010–5.

    Article  PubMed  CAS  Google Scholar 

  12. Chen R, Nishimura MC, Bumbaca SM, et al. A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell. 2010;17(4):362–75.

    Article  PubMed  CAS  Google Scholar 

  13. Bao S, Wu Q, Li Z, et al. Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res. 2008;68(15):6043–8.

    Article  PubMed  CAS  Google Scholar 

  14. Ogden AT, Waziri AE, Lochhead RA, et al. Identification of A2B5+CD133-tumor-initiating cells in adult human gliomas. Neurosurgery. 2008;62(2):505–14; discussion 14–5.

    Google Scholar 

  15. Tchoghandjian A, Baeza N, Colin C, et al. A2B5 cells from human glioblastoma have cancer stem cell properties. Brain Pathol. 2010;20(1):211–21.

    Article  PubMed  Google Scholar 

  16. Gunther HS, Schmidt NO, Phillips HS, et al. Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene. 2008;27(20):2897–909.

    Article  PubMed  CAS  Google Scholar 

  17. Pollard SM, Yoshikawa K, Clarke ID, et al. Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell. 2009;4(6):568–80.

    Article  PubMed  CAS  Google Scholar 

  18. Lim DA, Cha S, Mayo MC, Chen MH, Keles E, VandenBerg S, Berger MS. Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro Oncol. 2007;9(4):424–9.

    Article  PubMed  Google Scholar 

  19. Chaichana KL, McGirt MJ, Frazier J, Attenello F, Guerrero-Cazares H, Quinones-Hinojosa A. Relationship of glioblastoma multiforme to the lateral ventricles predicts survival following tumor resection. J Neurooncol. 2008;89(2):219–24.

    Article  PubMed  Google Scholar 

  20. Theillet C, Adelaide J, Louason G, et al. FGFRI and PLAT genes and DNA amplification at 8p12 in breast and ovarian cancers. Genes Chromosomes Cancer. 1993;7(4):219–26.

    Article  PubMed  CAS  Google Scholar 

  21. Adelaide J, Finetti P, Bekhouche I, et al. Integrated profiling of basal and luminal breast cancers. Cancer Res. 2007;67(24):11565–75.

    Article  PubMed  CAS  Google Scholar 

  22. Pflaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45.

    Article  Google Scholar 

  23. Franklin KB, Paxinos G. The mouse brain in stereotaxic coordinates. New-York: Academic; 2008.

    Google Scholar 

  24. Andrey P, Maurin Y. Free-D: an integrated environment for three-dimensional reconstruction from serial sections. J Neurosci Methods. 2005;145(1–2):233–44.

    Article  PubMed  Google Scholar 

  25. Joo KM, Kim SY, Jin X, et al. Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab Invest. 2008;88(8):808–15.

    Article  PubMed  CAS  Google Scholar 

  26. Lois C, Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain. Science. 1994;264(5162):1145–8.

    Article  PubMed  CAS  Google Scholar 

  27. Cayre M, Bancila M, Virard I, Borges A, Durbec P. Migrating and myelinating potential of subventricular zone neural progenitor cells in white matter tracts of the adult rodent brain. Mol Cell Neurosci. 2006;31(4):748–58.

    Article  PubMed  CAS  Google Scholar 

  28. Suzuki SO, Goldman JE. Multiple cell populations in the early postnatal subventricular zone take distinct migratory pathways: a dynamic study of glial and neuronal progenitor migration. J Neurosci. 2003;23(10):4240–50.

    PubMed  CAS  Google Scholar 

  29. Pfenninger CV, Roschupkina T, Hertwig F, et al. CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Res. 2007;67(12):5727–36.

    Article  PubMed  CAS  Google Scholar 

  30. Lottaz C, Beier D, Meyer K, et al. (2010) Transcriptional profiles of CD133+ and CD133− glioblastoma-derived cancer stem cell lines suggest different cells of origin. Cancer Res. 2010;70(5):2030–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the INCA, ARTC-Sud, SFCE, GEFLUC, and the CIT national program. Tumors were collected from the AP-HM tumor bank (2008/70).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Figarella-Branger PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tchoghandjian, A., Baeza-Kallee, N., Beclin, C. et al. Cortical and Subventricular Zone Glioblastoma-Derived Stem-Like Cells Display Different Molecular Profiles and Differential In Vitro and In Vivo Properties. Ann Surg Oncol 19 (Suppl 3), 608–619 (2012). https://doi.org/10.1245/s10434-011-2093-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-011-2093-5

Keywords

Navigation