Skip to main content

Advertisement

Log in

Intercellular Adhesion Molecule-1 (ICAM-1) is Upregulated in Aggressive Papillary Thyroid Carcinoma

Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Intercellular adhesion molecule-1 (ICAM-1) is implicated in carcinogenesis. In this study we examined the expression of ICAM-1 in papillary thyroid cancer (PTC). We hypothesized that ICAM-1 correlates with indicators of tumor aggressiveness in PTC.

Methods

Thirty-five primary and metastatic PTCs, five follicular adenomas, five Hashimoto thyroiditis, five nodular hyperplasia, and eight normal thyroid tissue samples were analyzed for ICAM-1 gene expression using quantitative reverse-transcription polymerase chain reaction (RT-PCR). ICAM-1 gene expression was analyzed at protein level by immunohistochemistry (IHC) using a semiquantitative score. Gene expression and intensity levels were correlated with markers of tumor aggressiveness including BRAF V600E mutation, tumor size, extrathyroidal extension (ETE), angiolymphatic invasion, and lymph node metastasis.

Results

ICAM-1 gene expression was higher in PTC (p = 0.01) and lymph node metastases (p = 0.03) when compared with benign tumors and Hashimoto’s. Furthermore, PTCs exhibiting BRAF V600E mutation (p = 0.01), ETE (p < 0.01), and lymph node metastasis (p = 0.02) were associated with higher ICAM-1 levels. Gene expression correlated with protein levels on IHC. Additionally, poorly differentiated thyroid carcinoma had a higher ICAM-1 intensity score compared with well-differentiated carcinoma (p = 0.03).

Conclusions

ICAM-1 expression is upregulated in papillary thyroid carcinoma. Furthermore, ICAM-1 upregulation correlated with aggressive tumor features such as BRAF V600E mutation, ETE, and lymph node metastasis, suggesting that ICAM-1 plays a role in thyroid cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rivera M, Ghossein RA, Schoder H, et al. Histopathologic characterization of radioactive iodine-refractory fluorodeoxyglucose-positron emission tomography-positive thyroid carcinoma. Cancer. 2008;113:48–56.

    Article  PubMed  Google Scholar 

  2. Yang L, Froio RM, Sciuto TE, et al. ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-alpha-activated vascular endothelium under flow. Blood. 2005;106:584–92.

    Article  PubMed  CAS  Google Scholar 

  3. Hayes SH, Seigel GM. Immunoreactivity of ICAM-1 in human tumors, metastases and normal tissues. Int J Clin Exp Pathol. 2009;2:553–60.

    PubMed  CAS  Google Scholar 

  4. Nakashima M, Eguchi K, Ishikawa N, et al. Expression of adhesion molecule ICAM-1 (CD54) in thyroid papillary adenocarcinoma. J Endocrinol Invest. 1994;17:843–8.

    PubMed  CAS  Google Scholar 

  5. Lin YC, Shun CT, Wu MS, Chen CC. A novel anticancer effect of thalidomide: inhibition of intercellular adhesion molecule-1-mediated cell invasion and metastasis through suppression of nuclear factor-kappaB. Clin Cancer Res. 2006;12:7165–73.

    Article  PubMed  CAS  Google Scholar 

  6. Skelding KA, Barry RD, Shafren DR. Systemic targeting of metastatic human breast tumor xenografts by Coxsackievirus A21. Breast Cancer Res Treat. 2009;113:21–30.

    Article  PubMed  Google Scholar 

  7. Basoglu M, Atamanalp SS, Yildirgan MI, et al. Correlation between the serum values of soluble intercellular adhesion molecule-1 and total sialic acid levels in patients with breast cancer. Eur Surg Res. 2007;39:136–40.

    Article  PubMed  CAS  Google Scholar 

  8. Pasieka Z, Kuzdak K, Czyz W, et al. Soluble intracellular adhesion molecules (sICAM-1, sVCAM-1) in peripheral blood of patients with thyroid cancer. Neoplasma. 2004;51:34–7.

    PubMed  CAS  Google Scholar 

  9. Melis M, Spatafora M, Melodia A, et al. ICAM-1 expression by lung cancer cell lines: effects of upregulation by cytokines on the interaction with LAK cells. Eur Respir J. 1996;9:1831–8.

    Article  PubMed  CAS  Google Scholar 

  10. Park S, Kang S, Veach AJ, et al. Self-assembled nanoplatform for targeted delivery of chemotherapy agents via affinity-regulated molecular interactions. Biomaterials. 2010;31:7766–75.

    Article  PubMed  CAS  Google Scholar 

  11. Arora N, Scognamiglio T, Lubitz CC, et al. Identification of borderline thyroid tumors by gene expression array analysis. Cancer. 2009;115:5421–31.

    Article  PubMed  CAS  Google Scholar 

  12. Pfeiffer P, Nexo E, Bentzen SM, et al. Enzyme-linked immunosorbent assay of epidermal growth factor receptor in lung cancer: comparisons with immunohistochemistry, clinicopathological features and prognosis. Br J Cancer. 1998;78:96–9.

    Article  PubMed  CAS  Google Scholar 

  13. Tanda F, Cossu A, Bosincu L, et al. Intercellular adhesion molecule-1 (ICAM-1) immunoreactivity in well-differentiated thyroid papillary carcinomas. Mod Pathol. 1996;9:53–6.

    PubMed  CAS  Google Scholar 

  14. Cooper DS, Doherty GM, Haugen BR, et al. Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid Off J Am Thyroid Assoc. 2006;16:109–42.

    Article  Google Scholar 

  15. Andersen PE, Kinsella J, Loree TR, et al. Differentiated carcinoma of the thyroid with extrathyroidal extension. Am J Surg. 1995;170:467–70.

    Article  PubMed  CAS  Google Scholar 

  16. Mazzaferri EL. Papillary thyroid carcinoma: factors influencing prognosis and current therapy. Semin Oncol. 1987;14:315–32.

    PubMed  CAS  Google Scholar 

  17. Cady B, Rossi R. An expanded view of risk-group definition in differentiated thyroid carcinoma. Surgery. 1988;104:947–53.

    PubMed  CAS  Google Scholar 

  18. Arora N, Turbendian HK, Scognamiglio T, et al. Extrathyroidal extension is not all equal: implications of macroscopic versus microscopic extent in papillary thyroid carcinoma. Surgery. 2008;144:942–7 (discussion 947–8).

    Article  PubMed  Google Scholar 

  19. Pfister DG, Fagin JA. Refractory thyroid cancer: a paradigm shift in treatment is not far off. J Clin Oncol. 2008;26:4701–4.

    Article  PubMed  CAS  Google Scholar 

  20. Ricarte-Filho JC, Ryder M, Chitale DA, et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 2009;69:4885–93.

    Article  PubMed  CAS  Google Scholar 

  21. Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev. 2007;28:742–62.

    Article  PubMed  CAS  Google Scholar 

  22. Riesco-Eizaguirre G, Rodriguez I, De la Vieja A, et al. The BRAFV600E oncogene induces transforming growth factor beta secretion leading to sodium iodide symporter repression and increased malignancy in thyroid cancer. Cancer Res. 2009;69:8317–25.

    Article  PubMed  CAS  Google Scholar 

  23. Derhaag JG, Duijvestijn AM, Van Breda Vriesman PJ. Heart EC respond heterogeneous on cytokine stimulation in ICAM-1 and VCAM-1, but not in MHC expression. A study with 3 rat heart endothelial cell (RHEC) lines. Endothel J Endothel Cell Res. 1997;5:307–19.

    CAS  Google Scholar 

  24. Murakami T, Mataki C, Nagao C, et al. The gene expression profile of human umbilical vein endothelial cells stimulated by tumor necrosis factor alpha using DNA microarray analysis. J Atheroscler Thromb. 2000;7:39–44.

    CAS  Google Scholar 

  25. Hu G, Gong AY, Liu J, et al. miR-221 suppresses ICAM-1 translation and regulates interferon-gamma-induced ICAM-1 expression in human cholangiocytes. Am J Physiol Gastrointest Liver Physiol. 2010;298:G542–50.

    Article  CAS  Google Scholar 

  26. Ueda R, Kohanbash G, Sasaki K, et al. Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1. Proc Natl Acad Sci USA. 2009;106:10746–51.

    Article  PubMed  CAS  Google Scholar 

  27. Lin FS, Lin CC, Chien CS, et al. Involvement of p42/p44 MAPK, JNK, and NF-kappaB in IL-1beta-induced ICAM-1 expression in human pulmonary epithelial cells. J Cell Physiol. 2005;202:464–73.

    Article  PubMed  CAS  Google Scholar 

  28. Yan W, Jiang Y, Huang Q. [The role of p38 MAPK in LPS induced ICAM-1 expression on endothelial cell]. Zhonghua shao shang za zhi (Chin J Burns). 2001;17:32–5.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Zarnegar MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buitrago, D., Keutgen, X.M., Crowley, M. et al. Intercellular Adhesion Molecule-1 (ICAM-1) is Upregulated in Aggressive Papillary Thyroid Carcinoma. Ann Surg Oncol 19, 973–980 (2012). https://doi.org/10.1245/s10434-011-2029-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-011-2029-0

Keywords

Navigation