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1. SUPPLEMENTARY MATERIAL.

LeEMMA 1.1.  Consider an m xm matriz 3. Denote the eigenvalues of the
matriz as \; and the corresponding eigenvectors as Qi, i1=1,---,m. Assume
that {3,} is a sequence of matrices with ¥,, — ¥ as n — oo. Denote the
eigenvalues of the matrix 3, as X\i, and the corresponding eigenvectors as
?m’ fori =1, m and Ay > Xop = A3y = -+ > A = 0. If Ay >
Ag > >N > >Ny, >0, wherel € {2,3,--- ,m}, then ¢, — ¢, for
i=1,2,---,1—1.

Proof of Lemma 1.1 Consider a convergent subsequence of {an}, de-
noted as {¢, }, with the limit as ¢;. Obviously, Ain,, = &7, ¥, 8,
Hence, Ain,, — ¢ 3¢, Taking limits on both sides of £, ¢, = Ain,, ¢
we have X¢ = (quEgb )qb Therefore, ¢, is an eigenvector of .

It then follows that if ¢, # ¢, or ¢, # —¢,, then ¢ T, < .

Since A1y, is the 1argest e1genvalue of the matrlx Enm, if follows that
¢T2nm¢ < ¢T Enm¢ = Ain,, for any ¢ satisfying ¢T¢ = 1. Taking
limits, we obtaln ¢TE¢ < QSTEgb < A2 < Ap for any ¢ satisfying qb ¢ =1,
which is a contradiction. Therefore any convergent subsequence of {¢ }
converges to ¢,.

Let X} = B, — An,, ¢, and £* = £ — \1¢,¢7, then lim T = ¥*.
Repeat the above proof on X7, we can show that ?271 — 92' Recursively, for
k <1l—1< m, we can show that an — ¢, ©

1nm,’

Proof of Theorem 2.1 Under Model (2), we have
—1 . T o_ -1 9(0) 2 ,(0) ,(0)T -1 9(0) 2 ,(0) ,(0)T
Doy = w6100 + 6] P o
i=1

n—1¢>§°> @) + n-1¢<0> (©"E)
n—1( )T¢ (QgO)TE)TqZ)éO)T +nlETE
n~ 10000 (0 ¢<0>T+¢ P07y,
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where E = (g1, ,&,)7.
Therefore, n=1 37 ; %QZT 2% T, where T is given in (11), from the Kol-

mogorov strong law of large numbers under Assumptions (M1)—(M6). It
follows from Lemma 1.1 that él &2, ng) and QZ2 &2, ng), because ng)
and Qéo) are the eigenvectors of I' corresponding to the largest eigenvalues
p3 + a2 + o2 and p3 + o3 + o2, respectively.o

Proof of Theorem 2.2

It is clear that I, — I" as n — oo, where I',, is given in (8). Also, I';, has
the same eigenspace as I' does, and E(n~! Y1 QZQ;F) =T,.

The gradient vector of p(y,;¢) — (Qngig;fpgl)(l —Q{Ql) - (Qggig?@2)(l -

T .
@, B,) is .
Dy p) = _zyiyfél + 2<9{}ﬂ¢ﬂ?91>¢1

= =20,y 6, + 28, 4,9, 0,)0, )

and the expectation of 3714 ¥(y,; ¢) is

[ —n(2Cg, — 2(87T00,)0,)
An(‘p) - < _n(QFnQ; — Q(QanQ;)Q;) ) ,

where [[¢, || = [|¢,[| = 1.

To give the Bahadur representation of él and éQ, we shall use Corollary
2.2 of He and Shao (1996). The main steps are to verify conditions (B3) and
(B4) among four conditions of He and Shao (1996) because (B1) is obvious
and (B2) is shown in Lemma 2.1.

Consider

=2y y! (¢, — 1) +2[(¢] y,u7 6,)8, — (] y,yl v1)vi)
=2y yl (¢, — va) + 2y y,u! 0,)0, — (V3 y,y] va)vs]

where @1 = (¢7,¢1)T and o = (v],13)7, and [|¢ || = [|¢,]| = |l =
llva|| = 1. Note that
2y,97 (&, —vy) = 20(0] vyl 6, — (] vyl v))v)]
= 2yyT(0, — 1) — 200, — 1) Tyl (B, — vy) + 2Ty (6, — )y
for j = 1,2. Under the assumption that ng)v Qéo) and g; have finite fourth
moments, we have

E{ sup [2yy7 (¢ —vy) =200 vyl ¢)0. — (v yy vyl
6 —,l<d j j 3’55

E(|ly,|I")ym?[1 + 2(d + 2)m]d?,

V(Y 01) =Y (Y5 02) = (
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fori =1,--- ,n and j = 1,2. Hence, if Assumption (M6) holds, the condi-
tions (B3) and (B4) in He and Shao (1996) are satisfied with r = 2.
The derivative of A, (¥) is

a =20, + 2(¢ T, Iy, + 29, 67 T') 0
Du(g) £ n ( L o 2T, L + 26,67T)

It then follows that

Dy, O
Dn«o@):n( . D)

where Dj,, are given in (10).

When n is sufficiently large, ng) and ng) are the eigenvectors of both
I';, and I', corresponding to the largest and the second largest eigenvalues,
respectively. Let Aj, = nflﬂﬁjHQ + 0]2 + 02, for j = 1,2 and \; = o2 for
j =3, ...,m. It can be easily verified that the eigenvectors of I';, are the same
as the eigenvectors of Dgn When n is sufficiently large, the eigenvalues of
Dy, corresponding to ¢ and qS are 2(Agp, — A1) and 4Agy, respectively.
The other eigenvalues of the matrlx Doy, are 2(Ag, — Aj) for j = 3,.
Similarly, we can verify that ¢} () and [2) () are the eigenvectors of Dy, and the
corresponding eigenvalues are 4\, and 2(A1n — A2n). The other eigenvalues
are 2(A1, — \j), j = 3, ..., m. Hence, Dy, (¢(?)) is a nonsingular matrix if the
three largest eigenvalues of I';, are strictly ordered, which is obviously true
when n is sufficiently large and Assumption (M5) holds.

Since

(=20 +2(¢] Tng L + 26,67 )] — Djn
= 2(¢; Tug; — &\ T\ I +4(0,07 — V00T,
= 2(¢; = 6 Tu(9, + ) I +4l(; — 6o + ' (&, — o)l

J
and HQ]H = HQJ ||=1and ', — T, for j = 1,2, it then follows that there

exists a constant rq such that | D, (¢) — Dy ()| < kon|e— @[ in a neigh-
borhood of go(o) when n is sufficiently large, where |- | is taken to be the sup
norm as in He and Shao (1996). Hence, from Corollary 2.2 of He and Shao
(1996), we have (10).¢

(
+j

Proof of Theorem 2.3
Since

2y 5T o — 20Ty 4T ()01 (D517 O
= (Aon — An)” (egi)géi +91i ng)Téi+9$)Q§0)T§i+950)T§i§?950)),



and [2y,y7 o) — 2607y yT 67 (D317 6" = 0, we have

(1) @y 4, = (A — A2n) 10 G+ (6, — 60T +65) + Tl 4 o(n~1+9),

(2) Go=nT' 005" + (0T E)OD) + (0 B)g) + o (BTE)),
from Theorem 2.2. Similarly,

~T _ €
(3) &, 4, = Az — A1n) 105G+ (&, — 6 Te; + 601 + Tl 4 o(n~1+).

By the strong law of large numbers, ¢, converge to 0 almost surely. Hence,
A T L 40 i T L0
we have 61, = ¢, y. — Ggi) + §1TQ§0) and 0y = ¢, y. — Ggi) + §1TQ§0)

Proof of Theorem 3.1
By (5) and (7), the Bahadur representation of the test statistic T, is given
as follows:

T,= n'd"(Yd,)
= Oin— )\2n)_1Cn(n_1aT0(0)) + n—1QTQ§0) + n—l(QTE)TQgO) + o(n~ 1)
= (n o) " Ga(n e ) a0 0 (@ B)T B + 0y (n )
_ nAQTQgO) + nfl(gTE)TQ2 + op(n’HE),
where (,, is given in (18). Therefore, under the null hypothesis Hy, we have
VT, -5 N(0,02 + 02), and thus, \/nT,/6 — N(0,1), where & and 6,.

are given in (14).
Under the alternative hypothesis,

— — a.s.
IQTQ2_n 1QTIu2 as.

and

A2 G.5. 2 2 2
0" — Uy + 05+ 07,

so we should expect to observe larger T,, when nilgTﬁz does not converge
to 0.0

Proof of Theorem 3.2



When £k is fixed, it follows that

n=10; AT Ad,
k

_ Z ~1/2 T9 2
j=1

— ! Z[QJTQS” + (@TB)P + o(1)
j=1
= n 19T AT A0 + o(1),

where § = (95({) + §¥“ng)’ 952) + §§Q§O), E ,95?1) + gggg’))T. Under the null
hypothesis, cov(A48) = Acov(§)AT = (03 + 0?)I}, so Af is jointly normally
distributed with mean 0 and variance-covariance matrix (03 +02) I, asymp-
totically. Thus,

P(n_légATAQQ/(Uz +03) < ) — Fy(x)—0,

where F} is the cumulative distribution function of the Xz distribution.
Hence,

(4) P(n=0y AT Af, /5% < ) — Fy(z)—0,
where 62 is given in (14), under the null hypothesis.o

Proof of Theorem 3.3 o
Firstly, let us show that M, = M, + o(n~1/?t¢). Actually, from (5) and
(17), we have

(5) n a8, = n 1076y + n Y (aTE) +n 1 (alY)s,,

where ¢, = o(n™'¢) uniformly in A. Since

max ‘(nilgTY)g ‘§|§| max ’nilgTY‘
1<j<n—1 e e L J

and
n

—-1.T —1
‘n al Y’ < max n Z:l |ajiyir|
1

2 1 -1 2
max (20)7 (g 2+ [y, )% = max (271 + (2) 7y )

IN



6

it then follows that

(6)  max n'ajf,= max n”'[a} 09 + (T E)O] + 0, (n 1)
Secondly,

cov(n_lﬂggﬁ, n~%q T@) =n"tal cov(8)ay,

where § = (0;2)—1—5{?50), e (0)+€T¢ ) and d,t € {1,2,--- ,n—1}. Since
cov(8) = (034021, under the null hypothesis, we have al cov(f)a, = 0 when
d # t. It then follows that

P(cn(ﬂn/\/ag +02—-by) < a:) —e

under the null hypothesis by Berman (1964).
Finally, since 62 = 03 + 02 + 0,(n~'/2%¢), it follows from the Slutsky
theorem that

en(My /6 = by) = (M /y[03 + 0% = by)

en(M,, — M) M, 03+ o? 03 +02—6 »
S T P T T L Ay WP i i
(02 O'% +0-2 g g
Hence,
P(cn(My)6 —by) <z) — e o
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