Skip to main content
Log in

Implementation of Dynamic and Static Moisture Control in Fluidized Bed Granulation

AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The application of process analysis and control is essential to enhance process understanding and ensure output material quality. The present study focuses on the stability of the feedback control system for a fluidized bed granulation process. Two strategies of dynamic moisture control (DMC) and static moisture control (SMC) were established based on the in-line moisture value obtained from the near-infrared sensor and control algorithm. The performance of these strategies on quality consistency control was examined using process moisture similarity analysis and principal component analysis. The stable moisture control performance and low batch-to-batch variability indicated that the DMC method was significantly better than other granulation methods. In addition, the investigation of robustness further showed that the implemented DMC method was able to produce predetermined target moisture values by varying process parameters. This study provides an advanced and simple control method for fluidized bed granulation quality assurance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

API:

Active pharmaceutical ingredient

CQAs:

Critical quality attributes

CWT:

Continuous wavelet transform

DMC:

Dynamic moisture control

HMI:

Human machine interface

MPC:

Model predictive control

NIR:

Near-infrared

OPC:

OLE for process control

PCA:

Principal component analysis

PID:

Proportional integral differential

PLC:

Programmable logic controller

PLS:

Partial least squares

QbD:

Quality by design

RMSEC:

Root mean squares error of calibration

RMSEP:

Root mean squares error of prediction

RMSECV:

Root mean squares error of cross-validation

RPD:

Ratio of performance deviation

RSD:

Relative standard deviation

SFT:

Spatial filtering technique

SMC:

Static moisture control

SNV:

Standard normal variate

References

  1. Parikh DM. Handbook of pharmaceutical granulation technology. Marcel Dekker. 2005.

  2. Zhong L, Gao L, Li L, Zang H. Trends-process analytical technology in solid oral dosage manufacturing. Eur J Pharm Biopharm. 2020;153:187–99.

    Article  CAS  PubMed  Google Scholar 

  3. Buschmueller C, Wiedey W, Doescher C, Dressler J, Breitkreutz J. In-line monitoring of granule moisture in fluidized-bed dryers using microwave resonance technology. Eur J Pharm Biopharm. 2008;69(1):380–7.

    Article  CAS  Google Scholar 

  4. Chablani L, Taylor MK, Mehrotra A, Rameas P, Stagner WC. Inline real-time near-infrared granule moisture measurements of a continuous granulation-drying-milling process. AAPS PharmSciTech. 2011;12(4):1050–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dawoodbhai S, Rhodes CT. The effect of moisture on powder flow and on compaction and physical stability of tablets. Drug Development Communications. 2008;15(10):1577–600.

    Google Scholar 

  6. Carstensen JT. Effect of moisture on the stability of solid dosage forms. Drug Dev Ind Pharm. 1988;14(14):1927–69.

    Article  CAS  Google Scholar 

  7. Ahuja S, Alsante K. Handbook of isolation and characterization of impurities in pharmaceuticals. Journal of Human Values. 2013;21(1):11–22.

    Google Scholar 

  8. Mahajan R, Templeton A, Harman A, Reed RA, Chern RT. The effect of inert atmospheric packaging on oxidative degradation in formulated granules. Pharm Res. 2005;22(1):128–40.

    Article  CAS  PubMed  Google Scholar 

  9. Burggraeve A, Van Den Kerkhof T, Hellings M, Remon JP, Vervaet C, De Beer T. Evaluation of in-line spatial filter velocimetry as PAT monitoring tool for particle growth during fluid bed granulation. Eur J Pharm Biopharm. 2010;76(1):138–46.

    Article  CAS  PubMed  Google Scholar 

  10. Alshihabi F, Vandamme T, Betz G. Focused beam reflectance method as an innovative (PAT) tool to monitor in-line granulation process in fluidized bed. Pharm Dev Technol. 2013;18(1):73–84.

    Article  CAS  PubMed  Google Scholar 

  11. Lourenço V, Herdling T, Reich G, Menezes JC, Lochmann D. Combining microwave resonance technology to multivariate data analysis as a novel PAT tool to improve process understanding in fluid bed granulation. Eur J Pharm Biopharm. 2011;78(3):513–21.

    Article  PubMed  Google Scholar 

  12. Schaefer T, Worts O. Control of fluidized bed granulation III. Effects of inlet air temperature and liquid flow rate on granule size and size distribution. Control of moisture content of granules in the drying phase. archpharmchemisci. 1978;6(17):4220–3.

  13. Lipsanen T, Antikainen O, Raikkonen H, Airaksinen S, Yliruusi J. Novel description of a design space for fluidised bed granulation. Int J Pharm. 2007;345(1–2):101–7.

    Article  CAS  PubMed  Google Scholar 

  14. Frake P, Greenhalgh D, Grierson SM, Hempenstall JM, Rudd DR. Process control and end-point determination of a fluid bed granulation by application of near infra-red spectroscopy. Int J Pharm. 1997;151(1):75–80.

    Article  CAS  Google Scholar 

  15. Food, Administration D. Guidance for industry, PAT-A Framework for innovative pharmaceutical development, manufacturing and quality assurance. http://www.fda gov/cder/guidance/published html. 2004.

  16. Veliz Moraga S, Villa MP, Bertin DE, Cotabarren IM, Pina J, Pedernera M, et al. Fluidized-bed melt granulation: the effect of operating variables on process performance and granule properties. Powder Technol. 2015;286:654–67.

    Article  CAS  Google Scholar 

  17. Watano S, Sato Y, Miyanami K. Control of moisture-content by adaptive fuzzy control in agitation fluidized-bed granulation. Adv Powder Technol. 1995;6(3):191–9.

    Article  CAS  Google Scholar 

  18. Palis S, Kienle A. Discrepancy based control of particulate processes. J Process Control. 2014;24(3):33–46.

    Article  CAS  Google Scholar 

  19. Romer M, Heinamaki J, Miroshnyk I, Kivikero N, Sandler N, Rantanen J, et al. Phase transformation of erythromycin a dihydrate during fluid bed drying. J Pharm Sci. 2008;97(9):4020–9.

    Article  CAS  PubMed  Google Scholar 

  20. Romer M, Heinamaki J, Miroshnyk I, Sandler N, Rantanen J, Yliruusi J. Phase transformations of erythromycin A dihydrate during pelletisation and drying. Eur J Pharm Biopharm. 2007;67(1):246–52.

    Article  PubMed  Google Scholar 

  21. Krogars K, Heinamaki J, Karjalainen M, Rantanen J, Luukkonen P, Yliruusi J. Development and characterization of aqueous amylose-rich maize starch dispersion for film formation. Eur J Pharm Biopharm. 2003;56(2):215–21.

    Article  CAS  PubMed  Google Scholar 

  22. Kogermann K, Aaltonen J, Strachan CJ, Pollanen K, Heinamaki J, Yliruusi J, et al. Establishing quantitative in-line analysis of multiple solid-state transformations during dehydration. J Pharm Sci. 2008;97(11):4983–99.

    Article  CAS  PubMed  Google Scholar 

  23. Kogermann K, Aaltonen J, Strachan CJ, Pollanen K, Veski P, Heinamaki J, et al. Qualitative in situ analysis of multiple solid-state forms using spectroscopy and partial least squares discriminant modeling. J Pharm Sci. 2007;96(7):1802–20.

    Article  CAS  PubMed  Google Scholar 

  24. Soppela I, Antikainen O, Sandler N, Yliruusi J. On-line monitoring of fluid bed granulation by photometric imaging. Eur J Pharm Biopharm. 2014;88(3):879–85.

    Article  CAS  PubMed  Google Scholar 

  25. Burggraeve A, Silva AFT, Van den Kerkhof T, Hellings M, Vervaet C, Remon JP, et al. Development of a fluid bed granulation process control strategy based on real-time process and product measurements. Talanta. 2012;100:293–302.

    Article  CAS  PubMed  Google Scholar 

  26. Obregon L, Quinones L, Velazquez C. Model predictive control of a fluidized bed dryer with an inline NIR as moisture sensor. Control Eng Pract. 2013;21(4):509–17.

    Article  Google Scholar 

  27. Oner M, Montes FCC, Stahlberg T, Stocks SM, Bajtner JE, Sin G. Comprehensive evaluation of a data driven control strategy: Experimental application to a pharmaceutical crystallization process. Chem Eng Res Des. 2020;163:248–61.

    Article  CAS  Google Scholar 

  28. Reimers T, Thies J, Stockel P, Dietrich S, Pein-Hackelbusch M, Quodbach J. Implementation of real-time and in-line feedback control for a fluid bed granulation process. Int J Pharm. 2019;567: 118452.

    Article  CAS  PubMed  Google Scholar 

  29. Bhosekar A, Ierapetritou M. Advances in surrogate based modeling, feasibility analysis, and optimization: a review. Comput Chem Eng. 2018;108:250–67.

    Article  CAS  Google Scholar 

  30. Rantanen J, Khinast J. The future of pharmaceutical manufacturing sciences. J Pharm Sci. 2015;104(11):3612–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boukouvala F, Chaudhury A, Sen M, Zhou R, Mioduszewski L, Ierapetritou MG, et al. Computer-aided flowsheet simulation of a pharmaceutical tablet manufacturing process incorporating wet granulation. J Pharm Innov. 2013;8(1):11–27.

    Article  Google Scholar 

  32. Salvador, García-Muo, Adam, Butterbaugh, Ian, Leavesley, et al. A flowsheet model for the development of a continuous process for pharmaceutical tablets: an industrial perspective. AlChE J. 2017;64(2).

  33. Wang Z, Escotet-Espinoza MS, Ierapetritou M. Process analysis and optimization of continuous pharmaceutical manufacturing using flowsheet models. Comput Chem Eng. 2017;107:77–91.

    Article  CAS  Google Scholar 

  34. Zhao J, Li W, Qu H, Tian G, Wei Y. Application of definitive screening design to quantify the effects of process parameters on key granule characteristics and optimize operating parameters in pulsed-spray fluid-bed granulation. Particuology. 2019;43:56–65.

    Article  Google Scholar 

  35. Kiam Heong A, Chong G, Yun L. PID control system analysis, design, and technology. IEEE Trans Control Syst Technol. 2005;13(4):559–76.

    Article  Google Scholar 

  36. Han J. From PID to active disturbance rejection control. IEEE Trans Industr Electron. 2009;56(3):900–6.

    Article  Google Scholar 

  37. Alcala M, Blanco M, Bautista M, Gonzalez JM. On-line monitoring of a granulation process by NIR spectroscopy. J Pharm Sci. 2010;99(1):336–45.

    Article  CAS  PubMed  Google Scholar 

  38. Frake P, Gill I, Luscombe CN, Rudd DR, Waterhouse J, Jayasorriya UA. Near-infrared mass median particle size determination of lactose monohydrate, evaluating several chemometric approaches. Analyst. 1998;123(10):2043–6.

    Article  CAS  PubMed  Google Scholar 

  39. O’Neil AJ, Jee RD, Moffat AC. The application of multiple linear regression to the measurement of the median particle size of drugs and pharmaceutical excipients by near-infrared spectroscopy. Analyst. 1998;123(11):2297–302.

    Article  CAS  PubMed  Google Scholar 

  40. Shao XG, Cai WS. Wavelet analysis in analytical chemistry. Rev Anal Chem. 1998;17(4):235–85.

    Article  CAS  Google Scholar 

  41. Shao XG, Leung AKM, Chau FT. Wavelet: a new trend in chemistry. Acc Chem Res. 2003;36(4):276–83.

    Article  CAS  PubMed  Google Scholar 

  42. Iveson SM, Litster JD, Hapgood K, Ennis BJ. Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review. Powder Technol. 2001;117(1–2):3–39.

    Article  CAS  Google Scholar 

  43. Bacher C, Olsen PM, Bertelsen P, Sonnergaard JM. Compressibility and compactibility of granules produced by wet and dry granulation. Int J Pharm. 2008;358(1–2):69–74.

    Article  CAS  PubMed  Google Scholar 

  44. Severson KA, Molaro MC, Braatz RD. Principal component analysis of process datasets with missing values. Processes. 2017;5(3).

  45. Dunia R, Edgar TF, Nixon M. Process monitoring using principal components in parallel coordinates. AlChE J. 2013;59(2):445–56.

    Article  CAS  Google Scholar 

  46. Roteuscher-Carl K, Fricke S, Hacker MC, Schulz-Siegmund M. Influence of in line monitored fluid bed granulation process parameters on the stability of ethinylestradiol. Int J Pharm. 2015;496(2):751–8.

    Article  Google Scholar 

  47. Yamamoto K, Shao ZJ. Chapter 30 - Process development, optimization, and scale-up: fluid-bed granulation. In: Qiu Y, Chen Y, Zhang GGZ, Liu L, Porter WR, editors. Developing solid oral dosage forms. San Diego: Academic Press; 2009. p. 701–14.

    Chapter  Google Scholar 

  48. Korteby Y, Mahdi Y, Daoud K, Regdon G Jr. A novel insight into fluid bed melt granulation: temperature mapping for the determination of granule formation with the in-situ and spray-on techniques. Eur J Pharm Sci. 2019;127:351–62.

    Article  CAS  PubMed  Google Scholar 

  49. Sacher S, Khinast JG. An overview of pharmaceutical manufacturing for solid dosage forms. In: Ierapetritou MG, Ramachandran R, editors. Process simulation and data modeling in solid oral drug development and manufacture 2016. p. 311–83.

  50. Keleb EI, Vermeire A, Vervaet C, Remon JP. Twin screw granulation as a simple and efficient tool for continuous wet granulation. Int J Pharm. 2004;273(1–2):183–94.

    Article  CAS  PubMed  Google Scholar 

  51. Dhenge RM, Cartwright JJ, Hounslow MJ, Salman AD. Twin screw wet granulation: effects of properties of granulation liquid. Powder Technol. 2012;229:126–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (grant numbers 2021YFB3201200, 2021YFB3201202), the Major Science And Technology Innovation Project of Shandong Province (grant number 2019JZZY021020), the Qinghai Special Project of Innovation Platform for Basic Conditions of Scientific Research of China (grant number 2020-ZJ-T05), the Future Scholar Program of Shandong University, and the Major Scientific and Technological Innovation Project of Shandong (grant number 2018CXGC1405).

Author information

Authors and Affiliations

Authors

Contributions

Liang Zhong: substantial contributions to the conception or design of the work, acquisition, analysis, drafting the work, final approval of the version to be published; Lele Gao: acquisition, analysis; Lian Li: revising it critically for important intellectual content; Lei Nie: revising it critically for important intellectual content; Hui Zhang: analysis; Zhongyu Sun: analysis; Ruiqi Huang: analysis; Zhaobang Zhou: analysis; Wenping Yin: analysis; Hui Wang: analysis; Hengchang Zang: substantial contributions to the conception or design of the work, resources, supervision, funding acquisition.

Corresponding author

Correspondence to Hengchang Zang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1234 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, L., Gao, L., Li, L. et al. Implementation of Dynamic and Static Moisture Control in Fluidized Bed Granulation. AAPS PharmSciTech 23, 174 (2022). https://doi.org/10.1208/s12249-022-02334-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02334-5

Keywords

Navigation