Skip to main content

Advertisement

Log in

Rethinking Breast Cancer Chemoprevention: Technological Advantages and Enhanced Performance of a Nanoethosomal-Based Hydrogel for Topical Administration of Fenretinide

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Herein, we developed an ethosomal hydrogel based on three types of ethosomes: simple, mixed (surfactant-based micelles and lipid vesicles) or binary (comprising two type of alcohols). Ethanol injection was employed for vesicles preparation, and sodium alginate, as gelling agent. We purposed the local-transdermal administration of the off-the-shelf retinoid fenretinide (FENR) for chemoprevention of breast cancer. Rheograms and flow index values for alginate dispersion (without ethosomes) and hydrogels containing simple, mixed or binary ethosomes suggested pseudoplastic behavior. An increase in the apparent viscosity was observed upon ethosome incorporation. The ethosomal hydrogel displayed increased bioadhesion compared to the alginate dispersion, suggesting that the lipid vesicles contribute to the gelling and bioadhesion processes. In the Hen’s Egg Test–Chorioallantoic Membrane model, few spots of lysis and hemorrhage were observed for formulations containing simple (score of 2) and mixed vesicles (score 4), but not for the hydrogel based on the binary system, indicating its lower irritation potential. The binary ethosomal hydrogel provided a slower FENR in vitro release and delivered 2.6-fold less drug into viable skin layers compared to the ethosome dispersion, supporting the ability of the gel matrix to slow down drug release. The ethosomal hydrogel decreased by ~ five-fold the IC50 values of FENR in MCF-7 cells. In conclusion, binary ethosomal gels presented technological advantages, provided sustained drug release and skin penetration, and did not preclude drug cytotoxic effects, supporting their potential applicability as topical chemopreventive systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Veronesi U, Mariani L, Decensi A, Formelli F, Camerini T, Miceli R, et al. Fifteen-year results of a randomized phase III trial of fenretinide to prevent second breast cancer. Ann Oncol. 2006;17:1065–71.

    Article  CAS  Google Scholar 

  2. Cooper JP, Reynolds CP, Cho H, Kang MH. Clinical development of fenretinide as an antineoplastic drug: pharmacology perspectives. Exp Biol Med. 2017;242:1178–84.

    Article  CAS  Google Scholar 

  3. Apolinário AC, Hauschke L, Nunes JR, Lopes LB. Towards nanoformulations for skin delivery of poorly soluble API: what does indeed matter? J Drug Deliv Sci Technol. 2020;60:1–13.

    Google Scholar 

  4. Mojeiko G, Passos JS, Apolinario AC, Lopes LB. Topical transdermal chemoprevention of breast cancer: where will nanomedical approaches deliver us? Nanomedicine. 2021;16:1713–31.

    Article  CAS  Google Scholar 

  5. Narvekar M, Xue HY, Eoh JY, Wong HL. Nanocarrier for poorly water-soluble anticancer drugs—barriers of translation and solutions. AAPS PharmSciTech. 2014;15:822–33.

    Article  CAS  Google Scholar 

  6. Lee O, Khan SA. Novel routes for administering chemoprevention: local transdermal therapy to the breasts. Semin Oncol. 2016;43:107–15. https://doi.org/10.1053/j.seminoncol.2015.09.003.

    Article  CAS  PubMed  Google Scholar 

  7. Lee O, Ivancic D, Allu S, Shidfar A, Kenney K, Helenowski I, et al. Local transdermal therapy to the breast for breast cancer prevention and DCIS therapy: preclinical and clinical evaluation. Cancer Chemother Pharmacol. 2015;76:1235–46.

    Article  CAS  Google Scholar 

  8. Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review development. Pharmaceutics. 2017;9:1–33.

    Article  Google Scholar 

  9. Touti R, Noun M, Guimberteau F, Lecomte S, Faure C. What is the fate of multi-lamellar liposomes of controlled size, charge and elasticity in artificial and animal skin? Eur J Pharm Biopharm. 2020;151:18–31. https://doi.org/10.1016/j.ejpb.2020.03.017.

    Article  CAS  PubMed  Google Scholar 

  10. Apolinário AC, Hauschke L, Nunes JR, Lopes LB. Lipid nanovesicles for biomedical applications: ‘What is in a name’? Prog Lipid Res. 2021;82:101096.

    Article  Google Scholar 

  11. Apolinário AC, Hauschke L, Nunes JR, Lourenço Felipe Rebello, Lopes LB. Design of multifunctional ethosomes for topical fenretinide delivery and breast cancer chemoprevention. Colloids Surfaces A Physicochem Eng Asp. 2021;623:126745.

    Article  Google Scholar 

  12. Rehman K, Zulfakar MH. Recent advances in gel technologies for topical and transdermal drug delivery. Drug Dev Ind Pharm. 2014;40:433–40.

    Article  CAS  Google Scholar 

  13. ICCVAM. Test method evaluation report: current validation status of in vitro test methods proposed for identifying eye injury hazard potential of chemicals and products (volume 2) Interagency Coordinating Committee on the Validation of Alternative Methods Nationa. 2010;2. Available from: https://ntp.niehs.nih.gov/iccvam/docs/ocutox_docs/invitro-2010/tmer-vol2.pdf

  14. Hosmer JM, Steiner AA, Lopes LB. Lamellar liquid crystalline phases for cutaneous delivery of paclitaxel: impact of the monoglyceride. Pharm Res. 2013;30:694–706.

    Article  CAS  Google Scholar 

  15. Trivedi R, Umekar M, Kotagale N, Bonde S, Taksande J. Design, evaluation and in vivo pharmacokinetic study of a cationic flexible liposomes for enhanced transdermal delivery of pramipexole. J Drug Deliv Sci Technol. 2021;61: 102313. https://doi.org/10.1016/j.jddst.2020.102313.

    Article  CAS  Google Scholar 

  16. Shah H, Nair AB, Shah J, Jacob S, Bharadia P, Haroun M. Proniosomal vesicles as an effective strategy to optimize naproxen transdermal delivery. J Drug Deliv Sci Technol. 2021;63: 102479. https://doi.org/10.1016/j.jddst.2021.102479.

    Article  CAS  Google Scholar 

  17. Marwah MK, Shokr H, Sanchez-Aranguren L, Badhan RKS, Wang K, Ahmad S. Transdermal delivery of a hydrogen sulphide donor, ADT-OH using aqueous gel formulations for the treatment of impaired vascular function: an ex vivo study. Pharm Res Pharmaceutical Research. 2022;39:341–52.

    CAS  PubMed  Google Scholar 

  18. Kuznetsova DA, Vasileva LA, Gaynanova GA, Vasilieva EA, Lenina OA, Nizameev IR, et al. Cationic liposomes mediated transdermal delivery of meloxicam and ketoprofen: Optimization of the composition, in vitro and in vivo assessment of efficiency. Int J Pharm. 2021;605:120803. https://doi.org/10.1016/j.ijpharm.2021.120803.

    Article  CAS  PubMed  Google Scholar 

  19. Altamimi MA, Hussain A, Alrajhi M, Alshehri S, Imam SS, Qamar W. Luteolin-loaded elastic liposomes for transdermal delivery to control breast cancer: in vitro and ex vivo evaluations. Pharmaceuticals. 2021;14.

  20. Altamimi MA, Hussain A, Alshehri S, Imam SS. Experimental design based optimization and ex vivo permeation of desmopressin acetate loaded elastic liposomes using rat skin. Pharmaceutics. 2021;13.

  21. Ali AA, Hassan AH, Eissa EM, Aboud HM. Response surface optimization of ultra-elastic nanovesicles loaded with deflazacort tailored for transdermal delivery: accentuated bioavailability and anti-inflammatory efficacy. Int J Nanomedicine. 2021;16:591–607.

    Article  Google Scholar 

  22. Jain A, Jain SK. In vitro release kinetics model fitting of liposomes: an insight. Chem Phys Lipids. 2016;201:28–40. https://doi.org/10.1016/j.chemphyslip.2016.10.005.

  23. Haidar ZS, Hamdy RC, Tabrizian M. Protein release kinetics for core-shell hybrid nanoparticles based on the layer-by-layer assembly of alginate and chitosan on liposomes. Biomaterials. 2008;29:1207–15.

    Article  CAS  Google Scholar 

  24. Fonseca-Santos B, Satake CY, Calixto GMF, Dos Santos AM, Chorilli M. Trans-resveratrol-loaded nonionic lamellar liquid-crystalline systems: structural, rheological, mechanical, textural, and bioadhesive characterization and evaluation of in vivo anti-inflammatory activity. Int J Nanomedicine. 2017;12:6883–93.

    Article  CAS  Google Scholar 

  25. Carvalho V, Lemos DP, Vieira CS, Migotto A, Lopes LB. Potential of non-aqueous microemulsions to improve the delivery of lipophilic drugs to the skin. AAPS PharmSciTech AAPS PharmSciTech. 2017;18:1739–49.

    Article  CAS  Google Scholar 

  26. Pepe D, Carvalho VFM, McCall M, De Lemos DP, Lopes LB. Transportan in nanocarriers improves skin localization and antitumor activity of paclitaxel. Int J Nanomedicine. 2016;11:2009–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  CAS  Google Scholar 

  28. Salata GC, Malagó ID, Carvalho Dartora VFM, Marçal Pessoa AF, Fantini MC de A, Costa SKP, et al. Microemulsion for prolonged release of fenretinide in the mammary tissue and prevention of breast cancer development. Mol Pharm. American Chemical Society (ACS); 2021;

  29. Shapiro YE. Structure and dynamics of hydrogels and organogels: an NMR spectroscopy approach. Prog Polym Sci. 2011;36:1184–253. https://doi.org/10.1016/j.progpolymsci.2011.04.002.

    Article  CAS  Google Scholar 

  30. Ahmed EM. Hydrogel : Preparation, characterization, and applications: a review. J Adv Res Cairo University. 2015;6:105–21. https://doi.org/10.1016/j.jare.2013.07.006.

    Article  CAS  Google Scholar 

  31. Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37:106–26. https://doi.org/10.1016/j.progpolymsci.2011.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. El Kechai N, Bochot A, Huang N, Nguyen Y, Ferrary E, Agnely F. Effect of liposomes on rheological and syringeability properties of hyaluronic acid hydrogels intended for local injection of drugs. Int J Pharm. 2015;487:187–96. https://doi.org/10.1016/j.ijpharm.2015.04.019.

    Article  CAS  PubMed  Google Scholar 

  33. Heatley F, Scott JE. A water molecule participates in the secondary structure of hyaluronan. Biochem J. 1988;254:489–93.

    Article  CAS  Google Scholar 

  34. Ionov R, El-Abed A, Goldmann M, Peretti P. Interactions of lipid monolayers with the natural biopolymer hyaluronic acid. Biochim Biophys Acta - Biomembr. 2004;1667:200–7.

    Article  CAS  Google Scholar 

  35. Duro-Castano A, Poma A, Pessoa A, Bueno CZ, Apolina AC, Rangel-yagui CO, et al. L - asparaginase encapsulation into asymmetric permeable polymersomes. Acs Macro Lett. 2020;9:1471–7.

    Article  Google Scholar 

  36. Devi N, Kakati DK. Smart porous microparticles based on gelatin/sodium alginate polyelectrolyte complex. J Food Eng Elsevier Ltd. 2013;117:193–204. https://doi.org/10.1016/j.jfoodeng.2013.02.018.

    Article  CAS  Google Scholar 

  37. Shen LN, Zhang YT, Wang Q, Xu L, Feng NP. Enhanced in vitro and in vivo skin deposition of apigenin delivered using ethosomes. Int J Pharm. 2014;460:280–8. https://doi.org/10.1016/j.ijpharm.2013.11.017.

    Article  CAS  PubMed  Google Scholar 

  38. Junqueira Garcia MT, Pedralino Gonçalves T, São Félix Martins É, Silva Martins T, de Abreu Carvalho, Fantini M, RegaziMinarini PR, et al. Improvement of cutaneous delivery of methylene blue by liquid crystals. Int J Pharm. 2018;548:454–65.

    Article  CAS  Google Scholar 

  39. Mojeiko G, de Brito M, Salata GC, Lopes LB. Combination of microneedles and microemulsions to increase celecoxib topical delivery for potential application in chemoprevention of breast cancer. Int J Pharm Elsevier. 2019;560:365–76. https://doi.org/10.1016/j.ijpharm.2019.02.011.

    Article  CAS  Google Scholar 

  40. U.S. Food and Drug Administration. Inactive ingredient search for approved drug products [Internet]. U.S. Food Drug Adm. 2020 [cited 2021 Mar 15]. Available from: https://www.accessdata.fda.gov/scripts/cder/iig/index.cfm

  41. Camelo SRP, Franceschi S, Perez E, Fullana SG, Ré MI. Factors influencing the erosion rate and the drug release kinetics from organogels designed as matrices for oral controlled release of a hydrophobic drug. Drug Dev Ind Pharm. 2016;42:985–97.

    Article  Google Scholar 

  42. Mircioiu C, Voicu V, Anuta V, Tudose A, Celia C, Paolino D, et al. Mathematical modeling of release kinetics from supramolecular drug delivery systems. Pharmaceutics. 2019;11:1–45.

    Google Scholar 

  43. Marcos LB. Mathematical models of drug release. In: Bruschi ML, editor. Strategies to modify drug release from pharmaceutical systems. Elsevier; 2015. p. 63–86.

    Google Scholar 

  44. Shetty S, Jose J, Kumar L, Charyulu RN. Novel ethosomal gel of clove oil for the treatment of cutaneous candidiasis. J Cosmet Dermatol. 2019;18:862–9.

    Article  Google Scholar 

  45. Glavas-Dodov M, Fredro-Kumbaradzi E, Goracinova K, Simonoska M, Calis S, Trajkovic-Jolevska S, et al. The effects of lyophilization on the stability of liposomes containing 5-FU. Int J Pharm. 2005;291:79–86.

    Article  CAS  Google Scholar 

  46. Fathalla D, Youssef EMK, Soliman GM. Liposomal and ethosomal gels for the topical delivery of anthralin: preparation, comparative evaluation and clinical assessment in psoriatic patients. Pharmaceutics. 2020;12:1–24.

    Article  Google Scholar 

  47. Yoon HY, Kwak SS, Jang MH, Kang MH, Sung SW, Kim CH, et al. Docetaxel-loaded RIPL peptide (IPLVVPLRRRRRRRRC)-conjugated liposomes: drug release, cytotoxicity, and antitumor efficacy. Int J Pharm. 2017;523:229–37. https://doi.org/10.1016/j.ijpharm.2017.03.045.

    Article  CAS  PubMed  Google Scholar 

  48. Smart JD. The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev. 2005;57:1556–68.

    Article  CAS  Google Scholar 

  49. Woodley J. Bioadhesion new possibilities for drug administration? Clin Pharmacokinet. 2001;40:77–84.

    Article  CAS  Google Scholar 

  50. Jin SG, Yousaf AM, Kim KS, Kim DW, Kim DS, Kim JK, et al. Influence of hydrophilic polymers on functional properties and wound healing efficacy of hydrocolloid based wound dressings. Int J Pharm. 2016;501:160–6. https://doi.org/10.1016/j.ijpharm.2016.01.044.

    Article  CAS  PubMed  Google Scholar 

  51. Frank LA, Chaves PS, D’Amore CM, Contri RV, Frank AG, Beck RCR, et al. The use of chitosan as cationic coating or gel vehicle for polymeric nanocapsules: increasing penetration and adhesion of imiquimod in vaginal tissue. Eur J Pharm Biopharm. 2017;114:202–12. https://doi.org/10.1016/j.ejpb.2017.01.021.

    Article  CAS  PubMed  Google Scholar 

  52. Izquierdo MC, Lillo CR, Bucci P, Gómez GE, Martínez L, Alonso V, et al. Comparative skin penetration profiles of formulations including ultradeformable liposomes as potential nanocosmeceutical carriers. J Cosmet Dermatol. 2020;19:3127–37.

    Article  Google Scholar 

  53. Niu X, Zhang D, Bian Q, Feng X, Li H, Rao Y. Mechanism investigation of ethosomes transdermal permeation. Int J Pharm X. 2019;1:100027. https://doi.org/10.1016/j.ijpx.2019.100027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang Y, Ng W, Hu J, Saleh S, Ge Y, Xu H. Formulation and in vitro stability evaluation of ethosomal carbomer hydrogel for transdermal vaccine delivery. Colloids Surfaces B Biointerfaces. 2018;163:184–91. https://doi.org/10.1016/j.colsurfb.2017.12.031.

    Article  CAS  PubMed  Google Scholar 

  55. Mishra A, Pandey VK, Shankar BS, Melo JS. Spray drying as an efficient route for synthesis of silica nanoparticles-sodium alginate biohybrid drug carrier of doxorubicin. Colloids Surfaces B Biointerfaces. 2021;197: 111445. https://doi.org/10.1016/j.colsurfb.2020.111445.

    Article  CAS  PubMed  Google Scholar 

  56. Gong T. Improvement of in vitro anticancer activity of doxorubicin by sodium alginate nanoparticles delivery. J Pharm Biomed Sci. 2018;08:89–93.

    Google Scholar 

  57. Rossi T, Iannuccelli V, Coppi G, Bruni E, Baggio G. Role of the pharmaceutical excipients in the tamoxifen activity on MCF-7 and vero cell cultures. Anticancer Res. 2009;29:4529–33.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. Leticia Costa-Lotufo (Institute of Biomedical Sciences, University of Sao Paulo) for use of the cell culture facility.

Funding

This study was supported by São Paulo Research Foundation (FAPESP, grant# 2018/ 13877–1) and CAPES (finance code 001). Fellowships from FAPESP (grant# 2018/14375–0 to A.C. Apolinário) and National Council of Technological and Scientific Development (306866/2020–0 to L.B. Lopes) are greatly appreciated. This study is part of the National Institute of Science and Technology in Pharmaceutical Nanotechnology: a transdisciplinary approach INCT-NANOFARMA, which is supported by FAPESP (grant #2014/50928–2) and CNPq (grant # 465687/2014–8). The authors are grateful to CENTD for support with the confocal microscopy facility. CENTD is supported by São Paulo Research Foundation (FAPESP) grant number 2020/13139–0 (FAPESP/GSK/Instituto Butantan).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization—A.C.A. and L.B.L.; confocal microscopy assay—M.M.S.; HET-CAM and rheology assay—G.C.S.; bioadhesion: M.C.; writing—original draft preparation—A.C.A., M.C. and L.B.L.; funding acquisition—L.B.L.

Corresponding authors

Correspondence to Alexsandra Conceição Apolinário or Luciana Biagini Lopes.

Ethics declarations

Conflict of Interest

The authors filed for a patent application in Brazil in a topic related to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2661 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apolinário, A.C., Salata, G.C., de Souza, M.M. et al. Rethinking Breast Cancer Chemoprevention: Technological Advantages and Enhanced Performance of a Nanoethosomal-Based Hydrogel for Topical Administration of Fenretinide. AAPS PharmSciTech 23, 104 (2022). https://doi.org/10.1208/s12249-022-02257-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02257-1

Keywords

Navigation