Skip to main content
Log in

Transfersome Hydrogel Containing 5-Fluorouracil and Etodolac Combination for Synergistic Oral Cancer Treatment

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Oral cancer is one of the most common malignancies with an increased rate of incidence. 5-Fluorouracil (5FU) is an effective chemotherapeutic indicated for oral cancer treatment. Etodolac (Et), a cyclooxygenase-2 inhibitor, can be used as an adjuvant agent to sensitize cancer cells to chemotherapy. The aim of this work was to prepare and characterize 5FU and Et dual drug–loaded transfersomes to treat oral cancer. Transfersomes were prepared by thin-film hydration method and characterized for the average particle size and zeta-potential using dynamic light scattering and scanning electron microscopy techniques. The prepared transfersomes were further characterized for their drug loading, entrapment efficiencies using amicon centrifuge tubes and drug release behavior using cellulose membrane. The synergistic activity of dual drug–loaded transfersomes was studied in FaDu oral cancer cells. Results showed that the average particle size, polydispersity index, and zeta potential were 91±6.4 nm, 0.28±0.03, and (−)46.9±9.5 mV, respectively, for 5FU- and Et (1:1)-loaded transfersomes. The highest encapsulation efficiency achieved was 36.9±3.8% and 79.8±6.4% for 5FU and Et (1:1), respectively. Growth inhibition studies in FaDu cells using different concentrations of 5FU and Et showed a combination index of 0.36, indicating a synergistic effect. The FaDu cell uptake of drug-loaded transfersomes was significantly (p<0.05) greater than that of free drugs. The transfersome hydrogel made of HPMC (2% w/w) showed similar flux, lag time, and permeation coefficient as that of drug-loaded transfersomes across excised porcine buccal tissue. In conclusion, 5FU and Et transfersome hydrogel can be developed for localized delivery to treat oral cancer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ren Z-H, Hu C-Y, He H-R, Li Y-J, Lyu J. Global and regional burdens of oral cancer from 1990 to 2017: results from the global burden of disease study. Cancer Commun. 2020;40(2–3):81–92. https://doi.org/10.1002/cac2.12009.

    Article  Google Scholar 

  2. Yete S, D’Souza W, Saranath D. High-Risk human papillomavirus in oral cancer: clinical implications. Oncology. 2018;94(3):133–41. https://doi.org/10.1159/000485322.

    Article  PubMed  Google Scholar 

  3. “Treating oral cavity and oropharyngeal cancer,” Am. cancer Soc., pp. 1–32, [Online]. Available: https://www.cancer.org/content/dam/CRC/PDF/Public/8766.00.pdf. Accessed March 2021.

  4. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, Sarkar S. Drug resistance in cancer: An overview. Cancers. 2014;6(3):1769–92. https://doi.org/10.3390/cancers6031769.

  5. Regnard C, Kindlen M. Chemotherapy: side effects. Support Palliat Care Cancer. 2019:39–41. https://doi.org/10.1201/9781315378596-13.

  6. Mokhtari RB, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, Yeger H. Combination therapy in combating cancer. Oncotarget. 2017;8:38022–43. https://doi.org/10.18632/oncotarget.16723.

  7. Zhang RX, Wong HL, Xue HY, Eoh JY, Wu XY. Nanomedicine of synergistic drug combinations for cancer therapy – strategies and perspectives. JControl Release. 2016;240:489–503. https://doi.org/10.1016/j.jconrel.2016.06.012.

    Article  CAS  Google Scholar 

  8. Gadde S. Multi-drug delivery nanocarriers for combination therapy. Medchemcomm. 2015;6(11):1916–29. https://doi.org/10.1039/c5md00365b.

    Article  CAS  Google Scholar 

  9. Safwat MA, Soliman GM, Sayed D, Attia MA. Gold nanoparticles enhance 5-fluorouracil anticancer efficacy against colorectal cancer cells. Int J Pharm. 2016;513(1):648–58. https://doi.org/10.1016/j.ijpharm.2016.09.076.

    Article  CAS  PubMed  Google Scholar 

  10. Singh V, Brecik M, Mukherjee R, Evans JC, Svetlíková Z, Blaško J, Surade S, Blackburn J, Warner DF, Mikušová K, Mizrahi V. The complex mechanism of antimycobacterial action of 5-fluorouracil. Chem Biol. 2015;22(1):63–75. https://doi.org/10.1016/j.chembiol.2014.11.006.

    Article  CAS  PubMed  Google Scholar 

  11. Li L, Chen L, Zhang H, Yang Y, Liu X, Chen Y. Temperature and magnetism bi-responsive molecularly imprinted polymers: preparation, adsorption mechanism and properties as drug delivery system for sustained release of 5-fluorouracil. Mater Sci Eng C. 2016;61:158–68. https://doi.org/10.1016/j.msec.2015.12.027.

    Article  CAS  Google Scholar 

  12. Murata S, Adachi M, Kioi M, Torigoe S, Ijichi K, Hasegawa Y, Ogawa T, Bhayani MK, Lai SY, Mitsudo K, Tohnai I. Etodolac improves 5-FU sensitivity of head and neck cancer cells through inhibition of thymidylate synthase. Anticancer Res. 2011;31(9):2893–8. Available: https://ar.iiarjournals.org/content/31/9/2893

    CAS  PubMed  Google Scholar 

  13. Na Y-R, Yoon Y-N, Son D-I, Seok S-H. Cyclooxygenase-2 inhibition blocks M2 macrophage differentiation and suppresses metastasis in murine breast cancer model. PLoS One. 2013;8(5):63451. https://doi.org/10.1371/journal.pone.0063451.

    Article  CAS  Google Scholar 

  14. Boakye CHA, Patel K, Singh M. Doxorubicin liposomes as an investigative model to study the skin permeation of nanocarriers. Int J Pharm. 2015;489(1):106–16. https://doi.org/10.1016/j.ijpharm.2015.04.059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015;10:975–99. https://doi.org/10.2147/IJN.S68861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Opatha SAT, Titapiwatanakun V, Chutoprapat R. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics. 2020;12(9):855. https://doi.org/10.3390/pharmaceutics12090855.

    Article  CAS  PubMed Central  Google Scholar 

  17. Mohan A, Narayanan S, Balasubramanian G, Sethuraman S, Krishnan UM. Dual drug loaded nanoliposomal chemotherapy: a promising strategy for treatment of head and neck squamous cell carcinoma. Eur J Pharm Biopharm. 2016;99:73–83. https://doi.org/10.1016/j.ejpb.2015.11.017.

    Article  CAS  PubMed  Google Scholar 

  18. Coimbra M, Isacchi B, van Bloois L, Torano JS, Ket A, Wu X, Broere F, Metselaar JM, Rijcken CJF, Storm G, Bilia R, Schiffelers RM. Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes. Int J Pharm. 2011;416(2):433–42. https://doi.org/10.1016/j.ijpharm.2011.01.056.

    Article  CAS  PubMed  Google Scholar 

  19. Ali MH, Moghaddam B, Kirby DJ, Mohammed AR, Perrie Y. The role of lipid geometry in designing liposomes for the solubilisation of poorly water soluble drugs. Int J Pharm. 2013;453(1):225–32. https://doi.org/10.1016/J.IJPHARM.2012.06.056.

    Article  CAS  PubMed  Google Scholar 

  20. Pereira S, Egbu R, Jannati G, Al-Jamal WT. Docetaxel-loaded liposomes: the effect of lipid composition and purification on drug encapsulation and in vitro toxicity. Int J Pharm. 2016;514(1):150–9. https://doi.org/10.1016/J.IJPHARM.2016.06.057.

    Article  CAS  PubMed  Google Scholar 

  21. Li ZL, et al. Pluronics modified liposomes for curcumin encapsulation: Sustained release, stability and bioaccessibility. Food Res Int. 2018;108:246–53. https://doi.org/10.1016/J.FOODRES.2018.03.048.

    Article  CAS  PubMed  Google Scholar 

  22. He H, Lu Y, Qi J, Zhu Q, Chen Z, Wu W. Adapting liposomes for oral drug delivery. Acta Pharm Sin B. 2019;9(1):36–48. https://doi.org/10.1016/J.APSB.2018.06.005.

    Article  PubMed  Google Scholar 

  23. Knudsen KB, Northeved H, Kumar EK P, Permin A, Gjetting T, Andresen TL, Larsen S, Wegener KM, Lykkesfeldt J, Jantzen K, Loft S, Møller P, Roursgaard M. In vivo toxicity of cationic micelles and liposomes. Nanomedicine. 2015;11(2):467–77. https://doi.org/10.1016/J.NANO.2014.08.004.

    Article  CAS  PubMed  Google Scholar 

  24. Inglut CT, Sorrin AJ, Kuruppu T, Vig S, Cicalo J, Ahmad H, Huang HC. Immunological and toxicological considerations for the design of liposomes. Nanomaterials. 2020;10(2) https://doi.org/10.3390/nano10020190.

  25. Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun. 2018;9:1410. https://doi.org/10.1038/s41467-018-03705-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Salem DS, Sliem MA, El-Sesy M, Shouman SA, Badr Y. Improved chemo-photothermal therapy of hepatocellular carcinoma using chitosan-coated gold nanoparticles. J Photochem Photobiol B Biol. 2018;182:92–9. https://doi.org/10.1016/J.JPHOTOBIOL.2018.03.024.

    Article  CAS  Google Scholar 

  27. Amul B, Muthu S, Raja M, Sevvanthi S. Spectral, DFT and molecular docking investigations on Etodolac. J Mol Struct. 2019;1195:747–61. https://doi.org/10.1016/J.MOLSTRUC.2019.06.047.

    Article  CAS  Google Scholar 

  28. Sun C-Y, Qin C, Wang XL, Yang GS, Shao KZ, Lan YQ, Su ZM, Huang P, Wang CG, Wang EB. Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Trans. 2012;41:6906–9. https://doi.org/10.1039/c2dt30357d.

    Article  CAS  PubMed  Google Scholar 

  29. Sherje AP, Kulkarni V, Murahari M, Nayak UY, Bhat P, Suvarna V, Dravyakar B. Inclusion complexation of etodolac with hydroxypropyl-beta- cyclodextrin and auxiliary agents: formulation characterization and molecular modeling studies. Mol Pharm. 2017;14(4):1231–42. https://doi.org/10.1021/acs.molpharmaceut.6b01115.

    Article  CAS  PubMed  Google Scholar 

  30. Ashwanikumar N, Kumar NA, Nair SA, Kumar GSV. Dual drug delivery of 5-fluorouracil (5-FU) and methotrexate (MTX) through random copolymeric nanomicelles of PLGA and polyethylenimine demonstrating enhanced cell uptake and cytotoxicity. Colloids Surf B: Biointerfaces. 2014;122:520–8. https://doi.org/10.1016/J.COLSURFB.2014.07.024.

    Article  CAS  PubMed  Google Scholar 

  31. Salah S, Mahmoud AA, Kamel AO. Etodolac transdermal cubosomes for the treatment of rheumatoid arthritis: ex vivo permeation and in vivo pharmacokinetic studies. Drug Deliv. 2017;24(1):846–56. https://doi.org/10.1080/10717544.2017.1326539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu F, Ao M, Zheng X, Li N, Xia J, Li Y, Li D, Hou Z, Qi Z, Chen XD. PEG–lipid–PLGA hybrid nanoparticles loaded with berberine–phospholipid complex to facilitate the oral delivery efficiency. Drug Deliv. 2017;24(1):825–33. https://doi.org/10.1080/10717544.2017.1321062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gelen V, Şengül E, Yıldırım S, Senturk E, Tekin S, Kükürt A. The protective effects of hesperidin and curcumin on 5-fluorouracil–induced nephrotoxicity in mice. Environ Sci Pollut Res. 2021;28(34):47046–55. https://doi.org/10.1007/s11356-021-13969-5.

    Article  CAS  Google Scholar 

  34. Rai SK, Allu S, Nangia AK. Salts and cocrystal of etodolac: advantage of solubility, dissolution, and permeability. Cryst Growth Des. 2020;20(7):4512–22. https://doi.org/10.1021/acs.cgd.0c00313.

    Article  CAS  Google Scholar 

  35. Chinembiri TN, Gerber M, du Plessis L, et al. Topical delivery of 5-fluorouracil from Pheroid™ formulations and the in vitro efficacy against human melanoma. AAPS PharmSciTech. 2015;16:1390–9.

    Article  CAS  Google Scholar 

  36. Yokogawa T, Yano W, Tsukioka S et al. dUTPase inhibition confers susceptibility to a thymidylate synthase inhibitor in DNA-repair-defective human cancer cells. Cancer Sci. 2021;112:422–32. https://doi.org/10.1111/cas.14718.

  37. Nasry WH, Rodriguez-Lecompte JC, Martin CK. Role of COX-2/PGE2 mediated inflammation in oral squamous cell carcinoma. Cancers. 2018;10(10) https://doi.org/10.3390/cancers10100348.

  38. Salatin S, Maleki Dizaj S, Yari Khosroushahi A. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol Int. 2015;39(8):881–90. https://doi.org/10.1002/cbin.10459.

    Article  CAS  PubMed  Google Scholar 

  39. Camacho KM, Menegatti S, Vogus DR, Pusuluri A, Fuchs Z, Jarvis M, Zakrewsky M, Evans MA, Chen R, Mitragotri S. DAFODIL: A novel liposome-encapsulated synergistic combination of doxorubicin and 5FU for low dose chemotherapy. J Control Release. 2016;229:154–62. https://doi.org/10.1016/j.jconrel.2016.03.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Matai I, Sachdev A, Gopinath P. Multicomponent 5-fluorouracil loaded PAMAM stabilized-silver nanocomposites synergistically induce apoptosis in human cancer cells. Biomater Sci. 2015;3(3):457–68. https://doi.org/10.1039/C4BM00360H.

    Article  CAS  PubMed  Google Scholar 

  41. Jose A, Mandapalli PK, Venuganti VVK. Liposomal hydrogel formulation for transdermal delivery of pirfenidone. J Liposome Res. 2016;26(2):139–47. https://doi.org/10.3109/08982104.2015.1060611.

    Article  CAS  PubMed  Google Scholar 

  42. Gupta R, Dwadasi BS, Rai B, Mitragotri S. Effect of chemical permeation enhancers on skin permeability: in silico screening using molecular dynamics simulations. Sci Rep. 2019;9(1):1456. https://doi.org/10.1038/s41598-018-37900-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schrijvers D, Van Herpen C, Kerger J, Joosens E, Van Laer C, Awada A, Van den Weyngaert D, Nguyen H, Le Bouder C, Castelijns JA, Kaanders J, De Mulder P, Vermorken JB. Docetaxel, cisplatin and 5-fluorouracil in patients with locally advanced unresectable head and neck cancer: a phase I–II feasibility study. Ann Oncol. 2004;15(4):638–45. https://doi.org/10.1093/annonc/mdh145.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Science and Engineering Research Board (SERB), India, under the Core Research Grant scheme (EMR/2016/005421) and BITS Pilani.

Author information

Authors and Affiliations

Authors

Contributions

S. R. B. performed the investigations, and experiments, and had written the original draft. V. K. participated in the investigations and methodology, performed the experiments, and had written the original draft. G. R. contributed to the design of experiments, preparation of transfersomes, and determination of encapsulation efficiency; D. D. designed the cell culture experiments; A. D. conceptualized the cell culture experiments and supervised the work; V. V. K. V. conceptualized the work, supported with funding and resources, revised the manuscript, and supervised the work.

Corresponding author

Correspondence to Venkata Vamsi Krishna Venuganti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bollareddy, S.R., Krishna, V., Roy, G. et al. Transfersome Hydrogel Containing 5-Fluorouracil and Etodolac Combination for Synergistic Oral Cancer Treatment. AAPS PharmSciTech 23, 70 (2022). https://doi.org/10.1208/s12249-022-02221-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02221-z

KEY WORDS

Navigation